Im C-LAB – Cooperative Computing & Communication Laboratory – arbeiten Mitarbeiter und Mitarbeiterinnen der Universität Paderborn und der Siemens IT Solutions and Services GmbH an gemeinsamen Forschungs- und Entwicklungsprojekten erfolgreich zusammen. Die Kooperation wurde 1985 von der Nixdorf Computer AG (nun Siemens IT Solutions and Services GmbH) und der Universität Paderborn im Einvernehmen mit dem Land Nordrhein-Westfalen gegründet.

C-LAB’s Cooperative Computing & Communication Laboratory successfully brings together employees from Paderborn University and from Siemens IT Solutions and Services GmbH in a series of joint research and development projects. The cooperation was initiated in 1985 by Nixdorf Computer AG (now Siemens IT Solutions and Services GmbH) and by Paderborn University with the support of the North Rhine-Westphalia regional government.

Dr. Wolfgang Kern,
Siemens IT Solutions and Services GmbH

Prof. Dr. Franz Josef Rammig,
Universität Paderborn

C-LAB
Fürstenallee 11
D-33102 Paderborn

www.c-lab.de
INHALTSVERZEICHNIS

VORWORT UND HIGHLIGHTS
FOREWORD AND HIGHLIGHTS ... 5

AUSGEWÄHLTE PROJEKTE
SELECTED PROJECTS ... 11

- AUTOMATISIERUNG MASCHINENGESTÜTZTER GESCHÄFTSPROZESSE
 AUTOMATION OF MACHINE-SUPPORTED BUSINESS PROCESSES 11
- MULTITOUCH UND BE-GREIFBARE INTERAktion IN DER EINSATZLAGEPLANUNG DES THW
 MULTITOUCH AND TANGIBLE INTERACTION FOR DISASTER CONTROL MANAGEMENT AT THE THW 19

PROJEKTÜBERSICHTEN
PROJECT OVERVIEW ... 26

- INNOVATIONSMANAGEMENT
 INNOVATION MANAGEMENT ... 26
- EINGEBETTETE SYSTEME
 EMBEDDED SYSTEMS ... 28
- ORGANIC COMPUTING
 ORGANIC COMPUTING ... 30
- OPTICAL INTERCONNECT TECHNOLOGY
 OPTICAL INTERCONNECT TECHNOLOGY ... 32
- ELECTRO MOBILITY SIMULATION SUITE
 ELECTRO MOBILITY SIMULATION SUITE ... 34
- BARRIEREFREIE GESTALTUNG: VORAUSSETZUNG FÜR EINE INKLUSIVE GESELLSCHAFT
 ACCESSIBLE DESIGN: A PRECONDITION FOR AN INCLUSIVE SOCIETY 36
- UMWELTREPORTING AUF BASIS VON UMWELT-PERFORMANCE-INDIKATOREN
 ENVIRONMENTAL REPORTING USING ENVIRONMENTAL PERFORMANCE INDICATORS 38
- NUTZERPROZESSE
 USER PROCESSES ... 40

PUBLIKATIONEN, FÖRDERPROJEKTE UND WISSENSCHAFTLICHE ZUSAMMENARBEIT
PUBLICATIONS, FUNDED PROJECTS AND SCIENTIFIC COLLABORATIONS 43

GREMIEN
BOARD MEMBERS .. 51

IMPRESSUM
IMPRESSUM ... 53
The world of Information and Communication Technology (ICT) is exciting. At the moment we can see two trends apparently moving in opposite directions. On the one hand, there is the tendency to centralize classical applications in what have become virtual service centers. On the other, we observe a trend towards decentralization in which ICT penetrates every possible kind of technical artifact. There are many new applications, solutions and services in classical domains of ICT. However other kinds of ICT are also growing – for instance innovative applications that support core processes in companies’ production divisions. ICT makes it possible to achieve improvements in productivity and efficiency that are not possible with other forms of optimization. For many reasons, core processes are highly sensitive. It is these processes that lie at the heart of the company’s mission. They embody classical company know-how. Furthermore, it is these processes and the years of accumulated experience they represent that give the company its identity. For many, ICT seems like a completely alien competency. Using it to improve a company’s core processes requires farsighted management that rationally moves towards its goals.

But new solutions are bringing far-reaching changes, even in classical ICT applications. One trend among many is the rise of Business Intelligence (BI) – the use of ICT to exploit the huge volume of data readily available in a company. One class of applications that are just beginning to make their mark are so-called semantic applications, which do not process the usual kind of well-structured data but extract value from the informal texts of emails, customer forums, service reports and so forth. Another area is the professional use of highly successful social network applications such as Facebook, LinkedIn, Twitter, etc. This requires community building. For example, a company could build a community of customers or
wertung von formalisierten Daten, sondern um die Einbeziehung von informellen, meist textuellen Informationen, wie sie in E-Mails, Kundenforen, Serviceberichten und sonstigen textuellen Medien vorhanden sind. Ein weiterer Aspekt hierbei ist, die im privaten Umfeld so überaus erfolgreichen social Webanwendungen wie Facebook, LinkedIn, Twitter usw. auch für professionelle Zwecke einzusetzen. Dazu ist es zuerst notwendig, entsprechende Gemeinschaften von Gleichgesinnten (Communities) zu bilden. Dies können beispielsweise Kunden oder Kundengruppen eines speziellen Produktes, einer speziellen Lösung oder eines speziellen Service sein, aber auch Wartungstechniker, Lieferanten etc. Im Rahmen des vom Bundesministerium für Wirtschaft und Technologie (BMWi) geförderten Forschungsprojektes THESEUS hat C-LAB an entsprechenden neuen Methoden und Technologien mitgearbeitet. Erste Anwendungen zeichnen sich ab und werden voraussichtlich in naher Zukunft umgesetzt.

So-called industrial ICT – the use of ICT in production – is also making great steps forward. For example C-LAB has achieved an important success with an application to support emergency services during major accidents. As part of the SOGRO (First Response in Major Accidents) Project, C-LAB helped to organize an exercise at Frankfurt Airport. The results showed that IT-supported triage of victims produced significant savings in time, compared to traditional methods, and could potentially save human lives. Using reconnaissance drones to locate victims would further reduce the time needed for evacuation.

This progress in industrial ICT has already reached TV ads. IBM has coined the slogan “...Making the planet smarter!”. After Smart Phones and Smart Factories, we now have Smart Homes, Smart Hospitals, Smart Grids and Smart Cars. For the moment, the term is overused – but in principle, the underlying principle is always the same. ICT is being used in a broad range of applications and is making a decisive difference to the functionality on offer. Another example of the same trend is the in-
Unterstützung der Triagierung von Verletzten zu einem signifikanten Zeitgewinn führt und somit mehr Menschenleben gerettet werden können als mit der klassischen Methode. Wenn dann auch noch die Lokalisierung der Verletzten mittels Drohenaufklärung ergänzend hinzukommt, kann sicherlich ein weiterer Zeitvorteil beim Abtransport der Verletzten erreicht werden.

Dieses Vordringen der industriellen IKT hat auch schon das klassische Werbefernsehen erreicht: Die Firma IBM wirbt mit dem Slogan „...machen wir unseren Planeten ein bisschen smarter!“ Angefangen bei Smart Phones über Smart Factories, Smart Homes, Smart Hospitals, Smart Grids bis hin zu Smart Cars erlebt dieser Begriff momentan eine inflatorische Verbreitung. Die Bedeutung ist jedoch im Prinzip immer gleich und dokumentiert den o. g. Trend, dass die IKT direkt in die verschiedenen Anwendungen hinein wandert und deren Funktionalität entscheidend erweitert. Einher mit diesem Trend geht die Zunahme der Bedeutung der eingebetteten Systeme, d. h. der Steuerung technischer Artefakte durch eingebettete IKT. Diese Computersysteme sind als solche nicht direkt erkennbar, aber trotzdem sehr leistungsfähig und effizienzsteigernd. Eine aktuelle Schätzung besagt, dass etwa 97 % aller Prozessoren in derartigen Systemen verbaut sind und auf diesen etwa 90 % der existierenden Software läuft.

Jahren auf der Universitäts-Seite des C-LAB verfolgte Projektgruppe dienen, die das Ziel hat, autonome Systeme zu entwickeln, die Fußball spielen können. Die Erkenntnisse aus diesem oder ähnlichen Projekten im C-LAB sind überaus wertvoll, weil die o.g. Smart X-Anwendungen Techniken erfordern, die auf derartigen Erkenntnissen beruhen. Die prinzipiellen Vorgänge sind immer ähnlich, nämlich die Umgebung wahrzunehmen (wo ist der Gegner, wo ist der Ball, wo sind meine Mitspieler, wo ist das Tor), diese Informationen zu bewerten (welche Rolle habe ich, welcher nächste Spielzug ist der günstigste, wem gebe ich den Ball) und bestimmte Reaktionen auszuführen (zu neuer Position laufen, den Ball zum Mitspieler abgeben, auf das Tor schießen).

Die Smart Grids, also die mit IKT aufgerüsteten Stromübertragungs- und verteilnetze, sind ein hochaktuelles Beispiel für die Nutzung derartiger Methoden wie sie an Fußballrobotern entwickelt wurden. In den vergangenen Jahren wurde die elektrische Energie in den Großkraftwerken nach einer relativ genau bekannten Verbrauchskurve über den Tag erzeugt und in Richtung der Verbraucher übertragen und verteilt. Diese Netztologie war über Jahrzehnte erprobt, stabil und hat in Deutschland und der EU zu relativ wenig größeren Netzausfällen geführt. Schon heute, und insbesondere in der nahen Zukunft, sind immer mehr erneuerbare Energiequellen und dezentrale kleine bis mittlere Blockheizkraftwerke am Netz, die alle elektrische Energie liefern. Diese sind nicht, wie die Großkraftwerke, an wenigen Standorten vorhanden, sondern nahezu flächendeckend oder sogar, bei Windkraftwerken in Nord- und Ostsee, in Regionen, wo früher nur einige wenige Verbraucher angesiedelt waren. Um diese vielen neuen, sehr volatilen Energierzeuger mit der jeweiligen Verbrauchssituation im Netz abzugleichen, bedarf es der Smart Grids. In einem entsprechend aufgeteilten Netz müssen die aktuellen Energieangebote und -bedarfe festgestellt, auf Basis von verschiedenen und sich ändernden Kriterien situationsabhängig bewertet und dann die entsprechenden Steuerungen in Echtzeit vorgenommen werden. Würde dies nicht gemacht, wären instabile Netze mit sich aufschaukelnden Spannungs- und Frequenzschwankungen sowie als Konsequenz großflächige Netzausfälle die Folge. In diesem Zusammenhang kommt auch die Elektromobilität ins Spiel, da die Elektroautos der Zukunft mit ihren jeweils vorhandenen Batterien eine Pufferfunktion zur Auf-

Die gemeinsam betriebene Innovationswerkstatt C-LAB wird all ihre IKT-Erfahrung, ihre Kompetenz sowie innovativen Konzeptideen einbringen, um zur erfolgreichen Bewältigung der beschriebenen Umbrüche beizutragen.

Dr. Wolfgang Kern
Prof. Dr. Franz J. Rammig

E-Mail:
kernwolfgang@siemens.com
franz@uni-paderborn.de
AUSGEWÄHLTE PROJEKTE

AUTOMATISIERUNG MASCHINEN-GESTÜTZTER GESCHÄFTSPROZESSE

DAS PROJEKT R2B

Hier setzt das im Rahmenprogramm SimoBIT angesiedelte und vom deutschen Bundesministerium für Wirtschaft und Technologie geförderte Projekt robot2business (r2b) an, in dem Lösungen zur Automatisierung von Geschäftspro zessen im mobilen Umfeld untersucht wurden. Dabei wurden insbesondere die Integration von mobilen Maschinen in eine automatisierte Ausführung von Geschäftsprozes

SELECTED PROJECTS

AUTOMATION OF MACHINE-SUPPORTED BUSINESS PROCESSES

Many branches of the economy are developing increasingly complex processes of value creation that depend critically on machines, IT systems and other kinds of equipment. Machines are becoming more and more productive. However, they also require ever-higher capital investment. This makes it essential to minimize down time and waiting time. In complex processes that involve many different people, lots of different equipment, and the risk of unpredictable factors in the external environment, the only way to achieve this is through comprehensive IT solutions that provide timely support to all concerned.

Innovative technologies allow the development of new business models. For instance, they can turn what was originally a pure product-based model into a combined product-service business. The introduction of new services increases the added value generated by the product and is seen by customers as a sign of technical innovation and a justification for investment. However, new business models do not just require new technologies and new business processes. They also need user-friendly solutions for the human service providers. In brief, this is an area in which C-LAB can exploit all three of its key competences.

THE R2B PROJECT

This is the theme of the robot2business (r2b) project, funded by the German Federal Ministry for the Economy and Technology, as part of its SimoBIT program. The goal of the project is to investigate solutions for the automation of business processes in mobile environments. A key topic is the integration of mobile machinery in automated business processes. The
sen untersucht. Damit werden zum einen menschliche Benutzer entlastet und zum anderen eine effizientere Abarbeitung der Geschäftsprozesse insgesamt ermöglicht. Aufgrund der Mobilität stellen die Anpassungsfähigkeit, die Selbstorganisation und die damit verbundene Kontextsensitivität für die Realisierung besondere Herausforderungen dar.

GESCHÄFTSPROZESSE UND MOBILITÄT

Im Zuge der Industrialisierung der Landwirtschaft spielen in den zugrunde liegenden Prozessen Maschinen eine wesentliche Rolle. Landwirtschaftliche Prozesse wurden bislang meist durch eine Steigerung der Leistungsfähigkeit der Maschinen optimiert, z. B. durch eine größere Arbeitsbreite, um mehr Volumen pro Zeiteinheit verarbeiten zu können. Diese Vorgehensweise stößt mittlerweile an ihre Grenzen. Viele Maßnahmen zur Leistungsssteigerung einer Landmaschine sind gleichzeitig mit einem höheren Gewicht verbunden. Dadurch wird aber der Boden zu stark belastet, was seine Nutzung negativ beeinflusst. Daher ist die Optimierung der Prozesse selbst ein vielversprechender Ansatz.

R2B ARCHITEKTUR

Um den hohen Anforderungen an Flexibilität, Dynamik und Robustheit in verteilten und hochgradig kontextabhängigen Systemen gerecht zu werden, umfasst die r2b-Architektur (s. Bild 3) drei grundlegende Komponenten: einen Leistungskonfigurator (Configurator), eine zentrale, techniques developed in the project facilitate the work of human operators while simultaneously improving overall business efficiency. At the same time, they meet the special challenges of providing adaptivity, self-organization and context sensitivity in a mobile setting.

BUSINESS PROCESSES AND MOBILITY

The industrialization of agriculture and agricultural production is highly dependent on machines. Up until now, the main way of optimizing these processes has been to improve machine performance, for example by increasing working width making it possible to process more volume per unit time. However, this way of proceeding is coming up against its own limitations. Many measures designed to improve machine performance make machines heavier. Heavy machines cause excessive compression of soil with negative effects on the ways it can be used. In this setting, process optimization offers a promising new approach.

Service providers in other industries – for example in the construction industry or in IT services – face similar challenges. Mobility makes a significant contribution to business processes but also makes them more complex. One of the biggest challenges is that local situations are unpredictable. Handling unexpected events such as machine breakdowns, changes in the environment parameters or rapid changes in the weather, require robust, context-sensitive processes. What is more, as soon as the process involves multiple actors, it requires self-organization.

THE R2B ARCHITECTURE

The aim of the r2b architecture is to meet the stringent requirements for flexibility, dynamicity and robustness of distributed, highly context-sensitive systems. To this end, the architecture (see Figure 3) consists of three basic components: a Configurator to configure services, a Management Instance System (MAIS) that provides central processing and integration capabilities and mobile Member Instance Systems (MEMIS) that execute the business process. All non-mobile components lie in the Management Layer where they carry out configuration, monitoring and control tasks. The mobile components all belong to the Member Layer.

12
The purpose of the **Configurator** is to configure services, translating general process descriptions into detailed instructions. In this case, the starting point is a description of the processes to be carried out by the system. Defining a configuration means associating a process (e.g. harvesting a fodder crop) with a billing model (e.g. payment by surface area or on the basis of a flat rate). The MAIS provides the Configurator with the information it requires, including data on the resources needed to perform the work (machines, materials, personnel), and on optional add-ons (e.g. services from external suppliers).

The MAIS plays the role of a back-end database system, providing the Configurator with configurations and sending process data to mobile systems. The MAIS is also the component that brings together the information generated by these systems as they perform their tasks. One of the MAIS’ roles, for example, is to prepare bills based on process data.

Finally, the last components in the architecture are the MEMIS – the mobile systems that carry out the process on the ground. These systems are fully or partially autonomous and can work together in groups to provide previously configured services. The inter-MEMIS information flows shown in Figure 3 illustrate this process.

TECHNOLOGICAL IMPLEMENTATION

Automation of business processes requires mapping them onto IT-concepts and runtime solutions. Recent developments in areas of Information and Communication Technology such as mobile radio communications, embedded systems and Service Oriented Architectures (SOAs) offer solutions and concepts for the development of flexible, loosely coupled, adaptive systems.

BASIC COMPONENTS

Automated execution of business processes by mobile machines requires a runtime environment that can be in-
TECHNOLOGISCHE REALISIERUNG

Die angestrebte Automatisierung der zugrunde liegenden Geschäftsprozesse erfordert deren Abbildung auf informationstechnische Konzepte und Laufzeitlösungen. Moderne Technologien aus der Informations- und Kommunikationstechnik, wie die Weiterentwicklungen im Bereich des Mobilfunks und eingebetteter Systeme, sowie neue Paradigmen, wie serviceorientierte Architekturen (SoA), stellen schon seit längerem Lösungen und Konzepte für die Entwicklung von flexiblen, lose gekoppelten und anpassungsfähigen Systemen bereit.

GRUNDKOMPONENTEN

Um eine automatisierte Ausführung von Geschäftsprozessen auf mobilen Maschinen zu ermöglichen, bedarf es einer Laufzeitumgebung, die in bereits existierende Maschinen- systeme integriert werden kann und die die Verarbeitung der für die lokale Geschäftsprozesssteuerung relevanten sensorischen Informationen ermöglicht. Die Vielfalt an Maschinen und Zusatzeräten verlangt nach einer sehr flexiblen und einfach anpassbaren Laufzeitumgebung.

Eine wesentliche nichtfunktionale Anforderung im Projekt r2b war der Einsatz von existierenden IT-Standards, um Übertragbarkeit und Wiederverwendbarkeit zu erreichen. Diese Anforderung, zusammen mit dem Wunsch nach hoher Flexibilität, Robustheit und Plattformunabhängigkeit, führte zu zwei grundlegenden technologischen Entscheidungen: OSGi und BPEL.

Die Anforderungen nach Flexibilität, dynamischer Anpassbarkeit zur Laufzeit und Plattformunabhängigkeit erfüllt die „OSGi Service Platform“ (OSGi Alliance, ehemals Open Services Gateway Initiative) laut Definition. Mit OSGi wird eine hardware-unabhängige dynamische Softwareplattform spezifiziert, die es ermöglicht, über ein Komponentenmodell Anwendungen und deren Dienste zu modularisieren und zu verwalten. Die Plattformunabhängigkeit wird durch den Einsatz einer JVM (Java Virtual Machine) erfüllt.

Für die Geschäftsprozessautomatisierung wurde auf BPEL (Business Process Execution Language) zurückgegriffen. BPEL gehört zu den Webservices-Standards und zielt auf eine ausführbare Beschreibung von Geschäftsprozessen mit unterschiedlichen Partnern, die über aufrufbare Schnittstellen via Internet integriert werden.

tegrated in existing equipment and that processes the sensor information required to control local processes. Given the need to accommodate a huge range of different machines and add-on equipment, the environment has to be very flexible and easy to customize.

An important non-functional requirement for the r2b project was the need to ensure portability and reusability and thus to use existing IT standards. Together with the need for high flexibility, robustness and platform independence, this requirement led the project to adopt two basic technologies: OSGi and BPEL.

As it promises in its name, the OSGi (Open Services Gateway Initiative) Service Platform from the OSGi Alliance, meets the requirements for flexibility, for dynamic runtime adaptability and for platform independence. OSGi provides a dynamic hardware-independent software platform that is component-based and allows developers to modularize and administer applications and their associated services. Platform independence is provided via a JVM (Java Virtual Machine).

For the automation of business processes, the project relies on BPEL (Business Process Execution Language). BPEL is part of the family of standards for web services. The goal of the language is to provide executable descriptions of business processes involving multiple partners that integrate their activities via interfaces made available over the Internet. It makes it possible to implement highly distributed business processes bringing together multiple services connected via web services or REST.

ROBUST COMMUNICATIONS

Highly distributed applications require the use of many different communication channels. Today, mobile networks are well developed in urban environments. Throughout the world, however, rural areas tend to be white areas on the map. This means that systems used in agricultural processes cannot rely on the availability of permanent connections.

AD HOC COMMUNICATIONS

One technique to deal with this situation is to store data until a communications infrastructure becomes available. Another way of guaranteeing robustness on the
Damit ist es möglich, stark verteilte Geschäftsprozesse durch die Kopplung von unterschiedlichen Diensten (über Webservices oder ReST) zu realisieren.

ROBUSTE KOMMUNIKATION

Die starke Verteilung erfordert die Verwendung vielfältiger Kommunikationskanäle. Ist in urbanen Gebieten heutzutage die Datenkommunikation über das Mobilfunknetz bereits gut ausgebaut, so sind ländliche Gebiete weltweit meist weiß Flecken. Somit kann bei landwirtschaftlichen Prozessen nicht davon ausgegangen werden, eine permanente Verbindung zur Verfügung zu haben.

AD HOC

STORE-CARRY-FORWARD

DATENSICHERHEIT

Bei Geschäftsprozessen im mobilen Umfeld und der Nutzung vielfältiger Kommunikationskanäle zur Übertragung von Daten erfordert die IT-Sicherheit eine besonde-

![Diagram](image.png)

Bild 4: Kommunikation und Sicherheit

Fig. 4: Communication and security

 ground is to use ad hoc communications. This technique assures cooperation among different agricultural machines involved in the same workflow.

STORE-CARRY-FORWARD

An alternative strategy is to distribute data redundantly between different communications partners. The idea is that non time-critical data can be transported asynchronously along a chain of different machines. For example the technique could be used to carry information from the fields where harvesting is taking place to the silo where the crop will be stored. This is what is called the Store-Carry-Forward principle.

DATA SECURITY

Business processes in a mobile environment and the use of multiple communications channels raise special issues in IT-security. The fundamental requirements are confidentiality and data integrity. In other words, systems have to ensure that unauthorized users cannot access the data, that the origin of the data is the origin stated, and that the data received is complete and unaltered. As BPEL is based on web services, the web services securi-

EINBINDUNG VON MASCHINENNUTZERN

ZUSAMMENFASSUNG

In zwei Anwendungsszenarien aus Landwirtschaft sowie IT-Service und -Wartung wurde die Machbarkeit durch Proof-of-Concept-Lösungen auf dem öffentlichen Abschlussmeilenstein des Projekts beim Johann Heinrich von Thünen-Institut (vTI), der ehemaligen Landwirtschaftlichen Bundesanstalt, am 11.06.2010 nachgewiesen. Im Rahmen des jährlich stattfindenden FieldRobot-Events wurde bei einer Live-Vorführung die, für das vom Projektpartner CLAAS (CLAAS Selbstfahrende Erntemaschinen GmbH) standard and other web service specifications provide the required functionality. These standards make it possible to implement encryption, digital signatures and authentication and thus to ensure secure end-to-end communications between MEMIS and MAIS, even when the system uses the Store-Carry-Forward technique for communication. Ad hoc communication requires special solutions including symmetric encryption and the authentication of individual users and machines.

BRINGING IN THE USERS

Even though r2b has a strong focus on machine processes, human beings are far from being irrelevant. Machine failures, unresolvable conflicts and situations that are unpredictable, even with context sensitivity, require interaction with human users – who are and will remain in ultimate control. At the same time, highly automated systems need to provide information on system status and on the current status of active processes. If the mobile units responsible for a task are people – for example service technicians – providing users with guidance and bringing them into the loop becomes unavoidable. One of r2b’s tasks has thus been to implement a browser-based user interface for business processes in an IT maintenance and service scenario.

ROUNDING UP

The project has tested the feasibility of two of its application scenarios (agriculture, IT service and maintenance) with proof of concept solutions and has demonstrated the two solutions at the project’s closing event, held on June 11, 2010, at the Johann Heinrich von Thünen-Institut (vTI), the former Federal Institute for Agriculture. At the annual Field Robot Event, the project gave a live demonstration of its solution for the fodder crop harvest scenario, defined by project partner CLAAS (CLAAS Selbstfahrende Erntemaschinen GmbH).

Two agricultural vehicles – a self-propelled forage harvester and a tractor – were equipped with the project’s hardware-software solution. They then carried out the fodder harvesting process on a test field. During the test, they automatically generated a bill for their services and warnings of any obstacles they met. Project partner CADsys (CADsys GmbH) made a similar demonstration of
schinen GmbH) definierte Landwirtschaftsszenario, entwickelte Lösung an dem Beispiel Grünfutterernte demonstriert.

Bild 5: Die Arbeitsgruppe „Grünfutterernte“ auf dem Abschlussmeilenstein von r2b
Fig. 5: The work group “fodder harvesting” at the r2b closing event

Kontakt/Contact: Emanuel Georgiew
E-Mail: Emanuel.Georgiew@siemens.com

Multitouch is a technology that makes it possible to support multiple simultaneous interactions through a touch-sensitive surface. Compared to classical keyboard and mouse-based interaction, multitouch offers users new, more intuitive ways of interacting with a system. For instance, gestures can be used to control objects on the screen with more than one finger or with both hands. Touchable interfaces allow multiple users to interact with a system, sometimes simultaneously, turning the system into a new kind of experience. Since Apple’s introduction of the iPhone, the market for the technology has been growing continuously. Multitouch is now being taken up in other application domains and products.

Tangible Interaction involves the use of tangible objects to interact with digital representations and information. The technique provides a direct, handy way of interacting with data. In this new interaction model, traditional two-dimensional, visual interfaces are replaced by three-dimensional haptic interfaces that bind digital data to familiar objects. The new techniques are increasingly present in scientific conferences and are beginning to be introduced on the commercial market.

C-LAB’s IDS group is investigating the new techniques from a usability viewpoint, and is examining ways of efficiently and effectively supporting their deployment.

TECHNOLOGIES AS A DRIVER FOR INNOVATION

Technical feasibility analysis: this was the first step towards building C-LAB’s multitouch table, the so-called...

NACHHALTIGE EINSATZSzenarien

Eine der wichtigsten Herausforderungen bei der Betrachtung innovativer Technologien ist die Analyse und Definition nachhaltiger Einsatzszenarien, welche die Vorteile und exklusiven Möglichkeiten der Technik sinnvoll nutzen und so für den Nutzer und Kunden einen möglichst großen Mehrwert bieten. Viele bisherige Demonstratoren und Prototypen im Themenbereich „Multitouch“ und „Be-greifbare Interaktion“ übertragen hauptsächlich bestehende IT-Anwendungskontexte auf diese neue Technologie, so dass sie das volle Potenzial nicht ausschöpfen. Entsprechend gehen derzeit im kommerziellen Umfeld wenige Produkte über einen flüchtigen „Wow-Effekt“ hinaus und können somit keinen Effizienzvorteil für diese Technologie nahelegen.

Nach umfangreicher Analyse unterschiedlicher Einsatzszenarien wurde im vorliegenden Fall – in Zusammenarbeit mit dem Technischen Hilfswerk (THW) Detmold – eine zukünftig mögliche Arbeitsumgebung des useTables zur Koordination der Einsatzlagesituation im Katastrophenfall herausgearbeitet und im Rahmen einer Studie umgesetzt.

USER-CENTERED DEVELOPMENT

Um die Technologien in Bezug auf die sinnvolle Anwendung in dem Einsatzzszenario bewerten zu können, wurden im Rahmen einer eigens für das C-LAB durchgeführten Übung durch das THW Detmold die Abläufe und Tätigkeiten der Helfer in der Einsatzleitung ethnografisch erfasst und analysiert. Anschließend wurden Anforde-
rungen an die Hard- und Software spezifiziert und in ei-
inem iterativen Prozess in eine Lösung überführt. Dabei
wurden die entwickelten Konzepte und Teillösungen re-
gelmäßig mit Helfern des THWs evaluiert und in Bezug
auf die Ergebnisse angepasst.

BEDARFSGERECHTE LÖSUNG

Der useTable und die darauf entwickelte Anwendung
für das THW dienen der Unterstützung der Einsatzlage-
planung. Basierend auf den Erkenntnissen der Anforde-

A READY-FOR-USE SOLUTION

The useTable and the THW application were designed
to support situation planning. The requirements analysis
made it possible to translate part of the existing workflow
into software. The previous approach had been to re-
present an emergency situation on paper-based maps on
a so-called ‘situation wall’ or ‘situation table’. This ap-
proach allowed emergency personnel to perform many
tasks, for example to identify flooded and inaccessible
areas and damaged infrastructure, to draw up so-
called ‘damage accounts’, associated with parti-
cular points, or areas on the map, and to send
Emergency Intervention Units to the localities con-
cerned. Reports from these units provided an over-
vie of the situation.

To ensure that the technology met the require-
mants based on the context of use, these and other
work practices were implemented on the useTable
exploiting the technological possibilities it had to
offer. Today, it is possible to create and manipulate
damage accounts with finger and pen input, to po-
sition the accounts on a digital map, and to com-
plete them with additional information (e. g. infor-
mation on emergency intervention units and con-
tact details. In current practice, magnetic markers
on the situation wall show the assignment of emer-
gency intervention units to specific accounts. The THW
application imitates this approach and allows users to
move markers until they overlap with accounts. To im-
prove efficiency, the system can use different kinds of

Bild 10: Mobile Führungsstelle des THW
Fig. 10: Mobile operations center of the THW

Bild 11: Derzeitige Situation der Einsatzlageplanung
Fig. 11: Current situation in planning

Weitere Möglichkeiten, die das System bereitstellt, sind beispielsweise die georeferenzierte Positionierung von Einheiten auf der Lagekarte, die Kommunikation mit mobilen Einheiten und deren tatsächlichen Positionsdarstellung sowie die Übermittlung von Live-Daten aus dem Einsatzgeschehen.

ÜBERPRÜFUNG DER GEBRAUCHSTAUGLICHKEIT

Erste Live-Demonstrationen und Tests durch Helfer des THWs bestätigen ein hohes Potenzial für die Praxis-

Bild 12 + 13: Einsatz neuer Interaktionsformen unter Berücksichtigung der Gebrauchstauglichkeit

Fig. 12 + 13: Implementation of new interaction techniques based on usability

ÜBERTRAGBARKEIT DER ERGEBNISSE

Der vorliegende Fall zeigt die Arbeitsweise des C-LABs und die Vorteile, die sich aus der vielseitigen Betrachtung eines Themas ergeben. Oftmals sind es neue Technologien, die einen Auslöser für die Produktentwicklung darstellen. Genau dann bedarf es jedoch einer kritischen Betrachtung hinsichtlich sinnvoller Einsatzbereiche für eben diese Technologien. Es müssen Anwendungs- und Business-Cases identifiziert werden, die für den Markt vielversprechende Perspektiven aufzeigen, insbesondere aber für den Nutzer und die Benutzung dieser Technologien einen Mehrwert darstellen. Letzten Endes entscheiden die Nutzer darüber, ob ein System am Markt existieren kann und ob die Lösung erfolgreich ist.

Durch die kritische Betrachtung aus den unterschiedlichen Perspektiven (Technologie, Nutzer- und Geschäftsprozesse) offenbaren sich erfahrungsgemäß weitere Anwendungsbereiche und Geschäftsfelder, auf die sich, oft durch geringen Aufwand, innovative Lösungen übertragen lassen.

USABILITY TESTING

The first live demonstrations and tests of the useTable and its application with THW emergency personnel showed that it had high potential. According to the experts, the combination of multitouch technology and application represented a significant improvement over current practice. The IDS group is now working to further develop the scenario and the system. The goal is to create a truly usable solution that can improve THW’s efficiency and effectiveness in carrying out its mission. In the future, THW experts will evaluate the system, in real world situations.

RE-USE OF RESULTS

This case shows the way C-LAB works and highlights the advantages of examining a question from many different points of view. Often new technologies can trigger the development of new products. At this point, it is essential to make a critical assessment of the way the application will be used in the future. Such an evaluation should identify application and business cases that are promising in marketing terms. However, the most important requirement is that they should represent genuine value for users. In the last analysis, it is users who decide if a system will have a future on the market and whether a solution will be successful.

A critical analysis from multiple viewpoints (technology, users, business processes) often suggests new domains and new areas of business where it is possible to develop innovative solutions with relatively little effort.

Kontakt/Contact: Dr. Karsten Nebe
E-Mail: Karsten.Nebe@uni-paderborn.de
BIS-Grid: Business Models for “Orchestration as a Service” in the Cloud Computing Market

BIS-Grid is a research project funded by the Bundesministerium für Bildung und Forschung (BMBF). The project has developed a workflow-supported, grid-based platform that integrates internal and external sources of information and orchestrates the exchange of information between them. This work leads naturally to the concept of “Orchestration as a Service” (OaaS). The C-LAB Business Development group has investigated the basic building blocks for service providers’ future business models.

The rapid technological development of the market for Grid/Cloud Computing and the resulting paradigm shift in business models (e.g. the introduction of XaaS) create major challenges for companies. Management needs to continuously monitor technological development and changes in market conditions and adapt its business models accordingly. BIS-Grid has responded to these needs by developing flexible business models for OaaS-Providers.

The project defined the scope of possible OaaS-offerings in modular terms. This approach made it possible to combine a set of basic building blocks in many different ways, and guaranteed the highest possible level of re-usability. Four modules were identified: process modeling, operation of the BIS-Grid Workflow Engine, support, and training. For each module, the project investigated the price models already used in the marketing of similar technologies and formulated recommendations on how best to adapt these models to the needs of the module. It went on to define the competences required for the different modules and to characterize their growth potential for OaaS-Providers.

Another issue addressed by the project was the formulation of recommendations for the commercialization
dem wurden die für die einzelnen Leistungsbau-

elemente notwendigen Kompetenzen definiert und mögliche Wachstumspotenziale für OaaS-Provider aufgezeigt.

Einen weiteren Schwerpunkt bildete die Ableitung von Empfehlungen für die Umsetzung der einzelnen Geschäfts-

modellbausteine. So wird die Kommunikation der Vorteile des OaaS-Angebots gegenüber potenziellen Kunden vor allem durch die enorme technologische Komplexität erschwert. Prototypen bzw. Demonstratoren kommt daher eine besondere Rolle zu. Außerdem ist es ratsam, einen Fachvertrieb für OaaS-Lösungen aufzubauen. Um die Lücke zwischen Anwender und Anbieter zu verkleinern und die Komplexität der Lösungen weiter herunter zu brechen, ist schließlich trotz des generischen Ansatzes der BIS-Grid Workflow Engine zunächst eine Fokussie-

rung auf einzelne Branchen anzustreben.

Für die generelle Positionierung im Grid-/Cloud-Umfeld hat sich herausgestellt, dass vor allem der Infra-

structure as a Service (IaaS)-Markt bereits von einigen großen Unternehmen dominiert wird, die aufgrund der realisierbaren Skaleneffekte praktisch uneinholbare Kostenvorteile gegenüber neuen Marktteilnehmern aufwei-

sen. Die für das Projekt gewählte „Nische“ OaaS stellt daher das aus Sicht der deutschen IT-Industrie vielver-
sprechendste Marktsegment, vielleicht sogar das einzig verbleibende attraktive Marktsegment, dar. Für dieses Segment wurden im Projekt entscheidende Entwick-

lungsaufwand und Vorarbeiten für eine kommerzialisierung geleistet, von denen sowohl Anwender bei ihrer Ent-
scheidungsfindung bezüglich der Auswahl einer OaaS-

lösung als auch Anbieter bei ihrer Entwicklung eigener OaaS-Lösungen profitieren können.

of the individual modules. The enormous complexity of the technology makes it hard to communicate the advantages of an OaaS-offering to potential customers. Prototypes and demonstrators can make a very useful contribution to overcoming this obstacle. It is also advisable to build up an expert sales division for OaaS-solutions. Finally, the BIS-Grid Workflow Engine is a generic tool. However, the best way of presenting it is to focus on specific applications. This reduces the gap between the company selling the solution and its customers.

As far as concerns the general position of OaaS in the Grid-/Cloud computing market, the project showed that the market for Infrastructure as a Service (IaaS) is already dominated by a few large companies. The economies of scale made possible by cloud technology give these companies a practically invincible cost advantage over newcomers. Even so, OaaS – the niche chosen for the BIS-Grid project – appears very promising for the German IT industry. In fact, it could be the only market segment that is still really attractive. The project’s software prototype and preparatory work for the commercialization of OaaS-solutions will be very useful both for users choosing OaaS-solutions and for vendors developing their own OaaS-solutions.

Kontakt/Contact: Melanie Jekal, Thomas John
E-Mail: Melanie.Jekal@siemens.com, Thomas.John@uni-paderborn.de

Einen Schwerpunkt der Arbeiten bildeten 2010 Modellierungs-, Integrations- und Simulationstechniken auf Basis von UML, IP-XACT, SystemC und QEMU.

Hier wurde in den letzten Jahren in Kooperation mit der University of California, Irvine, USA und der University of Texas, Austin, USA ein kanonisches Simulationsmodell für Echtzeitbetriebssysteme entwickelt, welches die zeitgenaue Analyse und Verifikation eingebetteter Echtzeitsysteme ermöglicht. Dieses wird als SystemC-Bibliothek unter dem Namen aRTOS zur Verfügung gestellt. Das Simulationsmodell reduziert ein Betriebssystem auf die grundlegenden Funktionen für Kommunikation und Scheduling unter Berücksichtigung von Zeitschränken, die durch gegenseitige Unterbrechungen und Interrupts sowie Ressourcenkonflikte verletzt werden können. Zur Modellierung der prozessor-spezifischen Ausführungszeiten kann hierzu die Anwendungssoftware mit Zeitinformationen automatisch instrumentiert werden. Im Vergleich zu gängigen Methoden zeichnen sich unsere Arbeiten durch eine um mehrere Größenordnungen kürzere Simulationszeit aus mit sehr geringer Abweichung von nur 1%–8% in der Zeitabschätzung.

In 2010, C-LAB’s Advanced Design Technologies (ADT) group was involved in many research projects and collaborations, several with outside funding. These included the TIMMO-2-USE, COCONUT, SATURN, SFB 614, and VERDE projects and collaboration with Fujitsu Technology Solutions. Other collaborations with industry included work on AUTOSAR-based design and virtualization technologies for use in firmware and software development for servers.

One of the most important aspects of the group’s work in 2010 was the application of modeling, integration and simulation techniques using UML, IP-XACT, SystemC and QEMU.

During the year, the group worked with University of California, Irvine, USA and University of Texas, Austin, USA to develop a canonical simulation model for real-time operating systems. The model makes it possible to verify embedded real-time software and to simulate the execution of the software with precise timing. The simulator was made available in the form of a SystemC library called aRTOS. The simulation model reduces an operating system to its basic communications and scheduling functions with time constraints. Preemptions, interrupts and resource access can create a conflict with these constraints. Modeling processor-specific execution times makes it possible to set application timing parameters automatically. Compared to current methods, the simulator reduces simulation time by several orders of magnitude and drastically reduces errors in timing estimates, which are now in the range of 1–8%.

Other work in the context of Virtual Prototypes involved the use of the QEMU software emulator to improve the efficiency of classical emulation technologies. The new approach makes it possible to simulate processor-specific binary code with precise timing. Two of the key research topics were the interfaces to SystemC and to the modeling tools used to design bus systems. For example, in the COCONUT project, the ADT group worked with Verona University, Italy, to develop a design methodology for bus modeling based on the TLM2.0 Standard, that uses canonical simulation models and QEMU for fast simulation, at several different levels of abstraction.
In complementary work, the group worked with Atego and other partners in the FP7 SATURN project to further develop the use of SysML/UML in the design of electronic systems. This work extended ARTISAN Studio with a SysML-Profile allowing the system to take synthesizable SystemC and embedded C code as an input. A code generator allows co-simulation of SystemC with executable C programs using QEMU followed by optional synthesis for Xilinx FPGAs.

In parallel with this work, the BMBF SANITAS project, led by Infineon Technologies, developed an intermediate format for the specification of performance specifications and test cases. This will make it possible to automatically generate test cases using an OVM[1]-based verification library ported to SystemC. Already half way through the year we implemented a functional coverage library which our industrial partners are already using.

Other ongoing work in the group involves the specification of real time properties for the synchronization of SystemC simulators with physical hardware (Hardware-in-the-Loop) and the IEEE P1850 PSL[2] standard. The group is also working with Springsoft on mutation-based analysis of testbenches.

Alongside its project work, the group participated in the organization of several national and international conferences, workshops and symposia, including MBMV’10 and SEIS’10. In 2010, Dr. W. Müller was the Program Chair for DATE 2010. He is currently working with TIMA, Grenoble, to organize the first QEMU Users Forum in 2011. In September 2010, Dr. Bernd Kleinjohann and Dr. Lisa Kleinjohann, from C-LAB, organized and led DIPES 2010, in Brisbane, where they were PC Chair and Publication and Organization Chair respectively.

Kontakt/Contact: Dr. Wolfgang Müller
E-Mail: wmueller@upb.de

[1] Open Verification Methodology
Im Rahmen des Organic Computing arbeitet das C-LAB an Systemen, die sich durch Selbstoptimierung, Selbstorganisation und Koordination automatisch an die jeweilige Situation anpassen, die dazu in geeigneter Form erfasst und aufbereitet wird.

Im BMBF Projekt SOGRO – Sofortrettung bei Großunfall mit Massenanfall von Verletzten (www.sogro.de) – arbeitet das C-LAB an der automatischen Erfassung von bildbasierten Lageinformationen mittels Flugdronnen (UAV) und deren Aufbereitung sowie an der Entwicklung von Koordinierungsstrategien, um durch mehrere UAV (semi-)autonom das Unglücksgebiet möglichst effizient zu erkunden. Ein weiteres Arbeitsthema ist die RFID-basierte Triagierung (Sichtung der Verletzten) mittels PDA (Personal Digital Assistant) und Leitstellenanbindung. Diese wurde im Oktober erfolgreich auf der bisher größten europäischen Katastrophenübung am Frankfurter Flughafen getestet. Dort waren etwa 2500 Menschen beteiligt, von denen mehr als 500 Unfallopfer waren.

Im Folgenden werden die Arbeiten zur UAV-Koordination näher erläutert. Hier findet sowohl eine Selbstoptimierung der einzelnen UAVs als auch eine Selbstorganisation der UAVs untereinander statt. Zur effizienten Aufklärung unbekannter Gebiete wurde eine UAV Software entworfen und simulativ evaluiert, die gewährleistet, dass sich mehrere UAVs so organisieren, dass redundante Überflüge, die zu einer wiederholten Aufklärung in kurzen Zeitabständen führen, möglichst minimiert werden. Da die Erkundung der Unglücksstelle so schnell wie möglich erfolgen soll, wurden Algorithmen untersucht, die sicherstellen, dass die UAVs Pfade planen, die sie möglichst schnell zu derzeit noch unerkundeten Gebieten führen und die vorzugsweise geographisch nah beieinander liegende unerkundete Areale nacheinander erkunden. Bei den meisten Unglücksgebieten existieren zudem bestimmte Bereiche, in denen sich mit hoher Wahrscheinlichkeit Verletzte befinden. Diese Gebiete werden möglichst schnell erkundet. Dabei muss darauf geachtet werden, dass nicht jedes dieser Gebiete durch mehrere UAVs abgesucht wird. Um dies zu gewährleisten, werden Selbstorganisationsstrategien für die UAVs entwickelt, die sicherstellen, dass nur so viele UAVs ein bestimmtes Gebiet überfliegen wie zu einer schnellen Erkundung erforderlich ist.

the group has developed procedures that ensure that when a UAV fails its tasks are taken over by the remaining drones. It is also necessary to make a trade-off between the efficiency of the survey and the time taken to reach particular areas. Thus, in the C-LAB solution, UAVs make a trade-off between the length of individual flight paths and the expected benefit in terms of new information.

C-LAB also works in DFG Collaborative Research Center 614, Self-optimizing Concepts and Structures in Mechanical Engineering (SFB 614), where it has developed a hybrid planning systems for hierarchical electronic-mechanical systems. In this setting, self-optimization means that the system adapts its behavior and its optimization goals to the situation and to the input it receives from the environment – all at runtime.

Another project in which C-LAB is involved is ESLAS (Evolving Societies in Learning Autonomous Systems). ESLAS is part of the DFG’s Priority Program on Organic Computing. The goal is to investigate new approaches to learning in groups of heterogeneous robots. This year the focus was on learning of cooperative behavior. C-LAB is especially interested in issues related to networking, team coordination and socio-biological control of behavior. To investigate these issues, the group has developed the Paderkickers, a team of seven football-playing robots that have also been used in teaching for student project groups.

Finally C-LAB has continued the development of its MEXI robot head – a system that can recognize emotions from a speaker’s prosody and facial expressions and respond appropriately with its own artificial emotions.

Kontakt/Contact: Dr. Bernd Kleinjohann
E-Mail: Bernd.Kleinjohann@c-lab.de
OPTICAL INTERCONNECT TECHNOLOGY

Whatever the area of information technology, the volume of data that needs to be processed is growing fast. The only way to handle it is to make more intensive use of optical transmission technologies for connections among the internal components of computer systems. Optical interconnects can significantly increase data rates while occupying less space and consuming less energy than alternative technologies. The idea is to use light to transmit data over special optical waveguides embedded in circuit boards (e.g., the backplane of a computer system). In 2010, C-LAB’s OIT group continued its work in this promising area of research and development.

SIMULATION AND DESIGN TOOLS

C-LAB’s development environment for multimodal optical interconnects on circuit boards allows engineers to analyze every technical detail of an interconnect, from the emission spectrum of an optical source through the performance of the waveguide – modeled in 3D – to the input of the detector. A key goal is to ensure accurate simulation of curved waveguides, even for curves with a radius of less than 10mm. To achieve this, the model takes account of the electromagnetic Goos-Hänchen shift and tunnel loss effects. The group has performed validation tests, using the simulator’s optical ray tracing algorithms to predict losses due to curvature and comparing the results against data from physical reference systems. The results have been excellent. To improve the performance of the ray tracing software, the group has used multithreading techniques to parallelize the computation. The latest version of the simulator distributes computation across multiple cores and provides capabilities for dynamic load management.

TECHNOLOGY DEVELOPMENT

During 2010, the group continued its work in the “Optical Link” project – funded by the North Rhine-Westphalia regional government. The goal of the project is to investigate the use of wavelength multiplexing methods in single mode waveguides integrated in circuit boards. One of the most critical challenges is to develop efficient solu-

Über die optische Datenkommunikation hinaus wurden in Zusammenarbeit mit dem Institut für Leichtbau im Automobil der Universität Paderborn Untersuchungen zur Einbettung von optischen Wellenleitern in Strukturen aus CFK-Leichtbauwerkstoffen aufgenommen. Hierbei geht es neben der optischen Informationsübertragung künftig vor allem um die Untersuchung verschiedener optischer Sensorfunktionen, welche direkt innerhalb einer Leichtbaustruktur realisiert werden können.

NETZWERKE UND ERGEBNISVERWERTUNG

Über die Arbeiten wird international publiziert. Die erarbeiteten Kompetenzen werden sowohl in weiterführenden Forschungsprojekten eingebracht als auch im Rahmen von kommerziellen Dienstleistungsprojekten verwertet.

Kontakt/Contact: Dr. Jürgen Schrage
E-Mail: juergen.schrage@siemens.com
ELECTRO MOBILITY SIMULATION SUITE

Analyzing and planning infrastructure and business scenarios for electric mobility is a highly complex task. Given the lack of any previous experience, there is a lot of doubt about technical and business parameters and about their implications for change. The idea of the Electro Mobility Simulation Suite (EMSS) is to support planning and analysis with computer simulation. The suite adopts a holistic, multidisciplinary approach that takes account both of technical parameters (e.g. location, number and type of charging stations, models of vehicles, battery capacity and range, distances to be covered, CO2 emissions etc.) and business indicators (e.g. investment, operating costs, forecast revenues, ROI). The suite’s model and simulation-based analyses also makes it possible to simulate operator business models – including opportunities for Value Added Services.

DEVELOPMENT OF A DEMONSTRATOR

In 2010, the EMSS project team developed a demonstrator for the suite (Demo-EMSS). The software made it possible to simulate a simplified fleet scenario and to analyze the implications of different technical and business parameters for key actors (a fleet operator, providers of charging stations, vehicles, and energy management services, filling station operators, providers of value added services). Figure 17 shows the simulation workflow. The basic scenario is the conversion of an imaginary fleet of vehicles with internal combustion engines to electrical vehicles. Possible examples might include fleet conversion for postal services, taxi companies, street cleaning services, public bus companies, services for home delivery of pizzas services or medicines, home care services, the police, car-sharing services etc. By analyzing the results from simulations, users can rapidly compare alternative scenarios in terms of technical and economic implications, and ecological efficiency. In this way, the system can provide useful support during the analysis and planning of customer-specific electro mobility strategies and investment, support decision-making, reduce the time required for planning and help to avoid mistaken investment.
tegie oder Investition, unterstützt die Entscheidungsfindung, trägt zur Verkürzung der Planungsphase bei und hilft letztlich Fehlinvestitionen zu vermeiden.

AUSBLICK

FUTURE WORK
In the next stage of the project, the team will work together with potential users to analyze Demo-EMSS and to identify detailed requirements for a complete version of the tool. The information generated by this work will be used to further develop and validate the software. In parallel with this work, the team will reduce the number of simplifying assumptions used in the software and thus make it possible to specify and simulate real life scenarios.

Kontakt/Contact: Dr. Jürgen Schrage
E-Mail: juergen.schrage@siemens.com
BARRIEREFREIE GESTALTUNG: VORAUSSETZUNG FÜR EINE INKLUSIVE GESELLSCHAFT

Das VN-Übereinkommen wurde in der Zwischenzeit von Deutschland, dem Europarat und der Europäischen Kommission sowie den meisten EU-Staaten ratifiziert, d. h. es wird nun in nationales Recht umgesetzt.

Auch die Bundesregierung fördert das Thema Barrierefreiheit und wirkt verstärkt auf den Abschluss von sog. Zielvereinbarungen gemäß Deutschem Behindertengleichstellungsgesetz hin.

All diese Aktivitäten geben der barrierefreien Gestaltung Auftrieb und neue Perspektiven.

Wir stellen uns den Herausforderungen

Das Accessibility Competence Center (ACC) hilft Siemens und seinen Kunden bei der barrierefreien Gestaltung von Produkten und Dienstleistungen.

ACCESSIBLE DESIGN: A PRECONDITION FOR AN INCLUSIVE SOCIETY

The United Nations’ 2006 Convention on the Rights of Persons with Disabilities demands and promotes the inclusion of disabled people in society with the full rights enjoyed by all people. In other words, society needs accessible products and services that elderly people and people with disabilities can use in their everyday lives, without difficulty or external help and it needs these products and services in every area of daily life.

Today, the UN Convention has been ratified by Germany, the European Council, the European Commission and the majority of EU member states, and is currently awaiting implementation in national law.

On November 15, 2010 the European Commission published the European Disability Strategy 2020: “A Renewed Commitment to a Barrier-Free Europe” (http://ec.europa.eu/social/main.jsp?langId=en&catId=89&newsId=933&furtherNews=yes). The most important points in the policy are the development of European regulations for accessible products and services and the use of public procurement to ensure accessibility of public buildings. The European Commission will consider whether to propose a “European Accessibility Act” by 2012, broadening the internal market for accessible products.

The German Federal government is also addressing the theme, and has intensified its effort to conclude the so-called “target agreements”, required by the German law on equality for disabled persons.

As expected, 2010 saw the publication of new Accessibility Standards by the US Access Board. Further standards have been announced for 2011. Additional draft standards have been opened for public comment.

All these developments have given new impetus and a new perspective to accessible design.

We meet the challenges

C-LAB’s Accessibility Competence Center (ACC) helps Siemens and its customers during the design of accessible products and services.

The Siemens Access Initiative (SAI) represents Siemens interests in accessibility, inside and outside the Siemens group – for example in DIGITALEUROPE, BIT-
Hauptaufgabe des ACC ist die verantwortliche Leitung und Koordination der Siemens Access Initiative (SAI), die die Interessen des Hauses Siemens im Bereich Accessibility nach innen und außen, z. B. in Verbänden wie DIGITALEUROPE, BITKOM und ZVEI und in der (internationalen) Normung vertritt.

Aus der Arbeit des ACC in 2010

Das ACC beteiligte sich aktiv an der Bearbeitung des CEN Workshop Agreements „Curriculum for training ICT Professionals in Universal Design“, das dazu dient, Schulungen unterschiedlicher Granularität für verschiedene Berufsgruppen systematisch zu gestalten.

Das ACC beteiligte sich darüber hinaus an verschiedenen EU-Förderprojekten.

KOM and ZWEI and during the creation of new (international) standards. The main task of the ACC is to provide responsible leadership and coordination for the initiative.

Some of the ACC's work in 2010

On February, 10, 2010, in Berlin, BITKOM, ZVEI, BDI and DKE held their joint Forum on Accessibility. ACC made a significant contribution to preparing and managing the initiative. High-ranking politicians, standardization officials and a large group of experts from business, offered the 130 participants a wide-ranging overview of the field. The BITKOM web site http://www.bitkom.org/de/veranstaltungen/62218_60556.aspx provides further information on the event, all presentations and a BITKOM position paper.

Another area in which ACC was actively involved, was the preparation of the CEN Workshop Agreement for a “Curriculum for training ICT Professionals in Universal Design”. The agreement formulates recommendations for the design of training programs with the appropriate levels of modularity for specific groups of professionals.

In the ISO “Advisory group for Accessible Design” and at the ISO/IEC/ITU International Workshop on “Accessibility and the contribution of International Standards”, held in Geneva between November 3 and November 5, 2010, the ACC pushed for a common effort to harmonize international accessibility standards, making them easier to apply and to understand and reduce potential conflicts.

The ACC is also engaged in various EU-funded research projects. The HaptiMap project (Haptic, Audio and Visual Interfaces for Maps and Location Based Services; http://www.haptimap.org) is designing, implementing and user testing GPS based solutions with enhanced maps and up to date local information, which can be extremely useful for elderly people and persons with disabilities. In this framework, the ACC is supporting a small company that is working to adapt its “Kapten”, completely speech-driven, navigation system to the needs of blind users. At the beginning of 2011 the company will release “Kapten+”, a follow-up product that will offer a real revolution in price, usability and quality of navigation.

Kontakt/Contact: Klaus-Peter Wegge
E-Mail: Klaus-Peter.Wegge@siemens.com
Herausforderung Klimaschutz

Beispiele für konkrete Fragestellungen sind:

- Ökobilanzen und Unternehmenskenngrößen für PR und Reporting
- Ökobilanz von Produkten, Dienstleistungen einschl. Vorlieferanten
- Ganzehtliche Planung unter Berücksichtigung z. B. von Transportwegen für Standorte
- Benchmarking mit Wettbewerbern und Optimierung

Der Schlüssel für optimale Entscheidungen ist die Information über ihre Umweltauswirkungen. Grundlage hierfür sind Kenngrößen, sogenannte EPI (Environmental Performance Indicators). Diese müssen:

- aus den besten ggf. mehreren Quellen stammen
- hinsichtlich ihrer Aussagekraft transparent sein
- auf individuelle Fragestellungen/Entscheidungsbedarf passen
- aktuell sein.

Lösungsansatz im Forschungsprojekt

Hier setzt das EU-geförderte Forschungsprojekt OEPI (Solution and Services Engineering for Measuring, Monitoring, and Management of Organizations’ Environmental Performance Indicators) an. Zunächst werden die relevanten Informationen in Analogie zu den üblichen KPI (Key Performance Indicators) als EPI strukturiert – am Beispiel von Anwendungsfällen der Projektpartner. Ziel ist dann die Entwicklung einer Plattform, mit der Anwender für ihre Produkte, Dienstleistungen, Planungen die Umwelt-Performanz-Indikatoren (EPI) ermitteln können. Dazu werden die verschiedenen EPI-Quellen (Datenbanken entsprechender Organisationen und Dienstleister), die die

The challenge of protecting the climate

The acute problems raised by climate change and the scarcity of raw materials have increased awareness of sustainability issues, among politicians and in the general public. It is thus increasingly important for businesses to optimize the ecological footprint of their products. The same is equally true for cities and city infrastructures.

Examples of concrete requirements might include:

- Ecological balance sheets and company indicators for use in PR and reporting
- Ecological balance sheets for individual products and services, taking account of upstream processes
- Holistic planning taking account of transport requirements in particular locations
- Benchmarking against competitors and optimization

The key to optimal decisions is information on their environmental consequences. The fundamental information consists of so-called Environmental Performance Indicators or EPI. These should be:

- Based on the best possible sources, and where appropriate on multiple sources
- Transparent about their predictive power
- Well-chosen to answer specific questions and to help with specific decisions
- Up to date.

A project to find solutions

This is the theme of OEPI (Solution and Services Engineering for Measuring, Monitoring, and Management of Organizations’ Environmental Performance Indicators), an EU-funded research project. The project’s first task is to consider cases relevant to the project partners and to transform information about these cases into EPIs – similar to the familiar KPIs (Key Performance Indicators), often used in business practice. The next step will be to develop a platform that can provide users with EPIs for their products, services and planning. To this end, the project will use different sources of EPI information. It will take databases belonging to organizations and service pro-

Siemens ist in diesem Projekt mit SIS C-LAB und Siemens Corporate Technology (CT) vertreten. CT hat Kompetenz in Tools und Methoden u. a. zu Ökobilanzierung, Material- und Produktumweltdeklarationen und Öko-Effizienzanalysen. SIS C-LAB wirkt an der technischen Realisierung der OEPI-Plattform mit.

Ziel der Arbeiten von SIS C-LAB ist es, ein Werkzeug zu konzipieren, das
• Siemens-weit für Ökooptimierung und -reporting genutzt werden kann
• SIS Kunden als Lösung anbieten kann
• als Grundlage für das Sustainability-Beratungs-Portfolio genutzt werden kann.

Umweltberichtswesen für SIS

Im Rahmen der Verselbstständigung ist ein eigenständiges Umweltberichtswesen der SIS, das bisher in Siemens-Berichten mit erfasst war, notwendig. C-LAB hat SIS PTM bei einer ersten Ermittlung von CO₂-Emissionswerten auf Basis der verfügbaren, noch unvollständigen Informationen für die SIS wesentlich unterstützt. Die Erkenntnisse dienen auch dem Aufbau eines entsprechenden Portfolioangebots der SIS.

Siemens ist in diesem Projekt mit SIS C-LAB und Siemens Corporate Technology (CT) vertreten. CT hat Kompetenz in Tools und Methoden für ecological balance sheets, certification of materials and products and ecological efficiency analyses. C-LAB is involved in the technical implementation of the platform.

Kontakt/Contact:
Matthias Niemeyer
E-Mail: matthias.niemeyer@siemens.com
Neukonzeption des Mitarbeiterportals eines führenden deutschen Versicherungsunternehmens auf Basis eines nutzerzentrierten Vorgehens

Effiziente und flexible Prozesse im Bereich Informations- und Wissensmanagement sowie eine funktionierende innerbetriebliche Kommunikation und Zusammenarbeit sind von entscheidender Bedeutung in der Versicherungsbranche, um dem wachsenden Wettbewerb mit Kostensenkungs- und Qualitätssteigerungspotenzialen zu begegnen.

Die derzeit in der Branche im Einsatz befindlichen Systeme sind der stetig zunehmenden Daten- und Informationsflut meist nicht gewachsen. Daher haben Versicherungsunternehmen begonnen, auf diese Herausforderungen zu reagieren.

Je nach Zielsetzung ist ein möglicher Weg, die heute implementierte Arbeitsplattform für die Bereitstellung von Informationen mit Teamsite durch ein neues Mitarbeiterportal auf Basis der technischen Plattform Microsoft SharePoint 2010 umzustellen. Das hier betrachtete Versicherungsunternehmen wurde durch unterschiedliche Siemens-Arbeitsgruppen, darunter das C-LAB, bei diesem Vorhaben begleitet. Ziel der Umstellung ist es, eine moderne und innovative Arbeitsplattform für das Intranet zu schaffen, welche die Arbeitseffizienz erhöht und kollaborative Prozesse fördert.

In diesem Projekt wurde die Expertise des C-LAB hinsichtlich nutzerzentrierter Produktentwicklung zur Unterstützung des Gesamtvorhabens eingesetzt. Maßgeblich wurden dabei analytische und konzeptionelle Aktivitäten zur Entwicklung einer neuen Informationsstruktur durchgeführt und mit Testmethoden begleitet.

Um eine 1:1 Migration des Altsystems zu vermeiden, wurde durch sogenanntes Card-Sorting gemeinsam mit Endnutzern zunächst die Informationsarchitektur neu konzipiert und durch Usability Testing evaluiert.

User-centered design for a new employee portal at a leading German insurance company

With increasing competition, it is critically important for insurance companies to reduce their costs and improve the quality of their services. This requires efficient, flexible processes for information and knowledge management and effective mechanisms for internal communication and collaboration.

In most cases, the systems used by companies have not kept up with the growing flood of data and information. However companies have begun to react.

In the case study presented here, a major insurance company decided to pursue this goal by replacing its previous intranet-based teamwork platform with a new employee portal, based on Microsoft SharePoint 2010. The goal was to introduce a modern, innovative platform that would increase productivity and encourage collaboration. Several Siemens teams assisted the company in making the change. C-LAB was one of them.

C-LAB’s role was to support the whole process with its expertise in user centered product development. More specifically, the team took on a series of analytical and conceptual tasks, developed a new information structure and applied new test methods. The iterative user centered design process was based on key concepts in the international DIN ISO 92141-210 standard and consisted of four phases: analysis, design, development, and testing.

The team worked with end-users to avoid a one-to-one porting of the previous system. End-users participated in a series of card sorting workshops. During these workshops, they developed an information architecture that seemed to them to be logical. The results were then consolidated and discussed with managers from the company. This method had low costs, did not take a lot of time and made it possible to obtain an optimal information architecture and presentation. It also helped to improve the wording of messages.

The card sorting workshops and their consolidated results led to a proposal for a new draft information archi-
In Card-Sorting-Workshops erarbeiten Endnutzer eines (zukünftigen) Systems beispielsweise eine für alle Teilnehmer logische Informationsarchitektur. Im Fall der Zusammenarbeit mit den Mitarbeitern konnten so die Ergebnisse der zwei Workshops konsolidiert und mit den Projektverantwortlichen des Versicherungsunternehmens diskutiert werden. Dies ist eine Methode der nutzerzentrierten Entwicklung, die bei geringem Kosten- und Zeitaufwand ermöglicht, die optimale Informationsdarstellung und -architektur sowie Schwachstellen in der Ausdrucksweise (Wording) zu ermitteln.

Basierend auf den Ergebnissen der Card-Sorting-Workshops und der Ergebniskonsolidierung wurde eine neue Informationsarchitektur entworfen und diese in einer zu diesem Zweck entwickelten prototypischen Umgebung getestet. Anhand des Nutzerfeedbacks konnte die Informationsarchitektur optimiert werden und in die technische Realisierung der Arbeitsplattform einfließen.

Die Einbindung der Endnutzer in die Phasen der Analyse, Konzeption und der Evaluierung trug wesentlich dazu bei, die Zufriedenheit seitens der Mitarbeiter zu steigern und somit die Etablierung des neuen Mitarbeiterportals positiv zu beeinflussen. Denn neben der Anforderung der Nutzer, einen schnellen und einfachen Zugang zu den für sie relevanten Daten sicherzustellen, galt es, die Hürde bei der Einführung eines Neusystems sanft zu meistern.

Kontakt/Contact: Melanie Jekal, Sven Ahlheid
E-Mail: Melanie.Jekal@siemens.com, Sven.Ahlheid@siemens.com

Involving end-users in the analysis, design and evaluation phases had a significant effect on employee satisfaction and created a positive atmosphere around the introduction of the new portal. The method ensured that users could access data rapidly and easily, and helped to overcome resistance to the new portal.
PUBLIKATIONEN, FÖRDERPROJEKTE UND WISSENSCHAFTLICHE ZUSAMMENARBEIT

PUBLICATIONS, FUNDED PROJECTS AND SCIENTIFIC COLLABORATIONS

LEHRVERANSTALTUNGEN / LECTURES

Universität Paderborn, Fakultät für Elektrotechnik, Informatik und Mathematik
Institut für Informatik

F. J. Rammig: Proseminar: Zuverlässige und fehlertolerante Systeme (SS 2010)
B. Kleinjohann, L. Kleinjohann: Intelligenz in eingebetteten Systemen (SS 2010)

F. J. Rammig: Proseminar: Zuverlässige und fehlertolerante Systeme (SS 2010)
B. Kleinjohann, L. Kleinjohann: Intelligenz in eingebetteten Systemen (SS 2010)

K. Nebe, F. Klompmaker, C. Reimann: Projektgruppe MUTTI (Multi User Table for Tangible Interaction), Teil 2 (SS 2010)
K. Nebe, F. Klompmaker, H. Jung: Projektgruppe, MUTTI v2 (Multi User Table for Tangible Interaction), Teil 1 (WS 2010/2011)

Fachhochschule Köln, Fakultät für Informatik und Ingenieurwissenschaften
Institut für Informatik

K. Nebe: Vorlesung und Übung, Usability- und Software-Engineering (SS 2010)

Fachhochschule Rhein-Waal, Fachbereich Kommunikation und Umwelt

Universität Paderborn, Fakultät für Wirtschaftswissenschaften, Fachgebiet Wirtschaftsinformatik

D. Kundisch, T. John: Seminar, IT Business Value (SS 2010)

Fachhochschule Gelsenkirchen, Fachbereich Informatik

F. Klompmaker: Vorlesung, Virtuelle Umgebungen A (SS 2010)
F. Klompmaker: Vorlesung, Virtuelle Welten (WS 2010/2011)

FHDW – Fachhochschule der Wirtschaft, Paderborn

BÜCHER, Konferenz und Journalbeiträge / BOOKS, CONFERENCE AND JOURNAL PAPERS

P. Adelt, M. Rose, N. Esaü: „Hybride Planung zur Auswahl des optimalen Rail-Cab-Verhaltens bezüglich der Umweltbedingungen und Streckeneigen- schaften“, 7. Paderborner Workshop „Entwurf mechatronischer Systeme“, Band 272, Paderborn, Germany, HNI Verlagsschriftenreihe, Paderborn; March 2010

Dirksen, Alexander: Rechnergestützte Auswertung von Diagnoseprozessen auf der OSGI-Plattform; Universität Paderborn, Fakultät für Elektrotechnik, Informatik und Mathematik; Prof. Dr. F. J. Ramming; Dr. M. Platzner, Dr. W. Thronicke

Fischer, Holger: Integration von Usability Engineering und Software Engineering: Evaluation und Optimierung eines ganzheitlichen Modells anhand von Konformitäts- und Rahmenanforderungen; Fachhochschule Köln, Fakultät für Informatik und Ingenieurwissenschaften, Studiengang Medieninformatik; Prof. Dr. G. Pflaßmann, Dr. K. Nebe

Grünloh, Christiane: Konzeptioneller Ansatz für Designaktivitäten und -techniken in Entwicklungsprozessen interaktiver Systeme; Fachhochschule Köln, Fakultät für Informatik und Ingenieurwissenschaften, Studiengang Medieninformatik; Prof. Dr. G. Pflaßmann, Dr. K. Nebe

Hecker, Arndt: Strukturierte Darstellung des Reifegrads deutscher Elektromobilitätsvorhaben; Universität Paderborn, Fakultät für Wirtschaftswissenschaften; Prof. Dr. D. Kundisch, Dipl.-Wirt.-Inf. Th. John

Hildebrandt, Jessica: Eine industrieökonomische Betrachtung von innovationscontrolling am Beispiel eines IT-Dienstleisters im Bereich Elektromobilität; Fernuniversität Hagen, Lehrstuhl für BWL, insb. Unternehmensrechnung und Controlling; Prof. Dr. J. Littkemann, Dipl.-Kfm. Th. Hahn., Dipl.-Kfm. A. Krebs

Jones, Christopher Alain: Evaluation of a Ray Tracing Method for the Simulation of the Wave Interference Phenomena in Multimode Waveguides; Universität Paderborn, Fakultät für Elektrotechnik, Informatik und Mathematik; Prof. Dr. R. Schuhmann, Dipl.-Ing. Y. Sönmez

Jungmann, Alexander: Objekterkennung durch Bewegungsanalyse von Bildmerkmalen; Universität Paderborn, Fakultät für Elektrotechnik, Informatik und Mathematik; Dr. B. Kleijnjohan, Prof. Dr. F. J. Ramming

Kudrin, Vladimir: Modellierung der Einkopplung optischer Wellen in eingebettete schwach führende Wellenleiter mit Gradientenprofil; Universität Paderborn, Fakultät für Elektrotechnik, Informatik und Mathematik; Prof. Dr. R. Schuhmann, Dr. M. Stallein, Dr. O. Stübke

Müller, Jan-Philipp: Einsatzmöglichkeiten nutzerzentrierter Verfahren zur Bewertung der Informationsqualität im Enterprise 2.0; Universität Paderborn, Fakultät für Elektrotechnik, Informatik und Mathematik; Dr. K. Nebe, Dipl.-Kfm. S. Alheid, Dipl.-Kfm. A. Krebs

Müller, Tobias: Untersuchung zur kolokalen, kollaborativen Wissensarbeit am Gegenstand von interaktiven Multi-Touch- und Multi-User-Tables; Universität Paderborn, Fakultät für Elektrotechnik, Informatik und Mathematik; Dr. K. Nebe, Dr. H. Seilke

Papenberg, Florian: Lokalisierung und Kartierung für mobile Roboter aus Merkmalen der dreidimensionalen Umgebung; Universität Paderborn, Fakultät für Elektrotechnik, Informatik und Mathematik; Dr. B. Kleijnjohan, Prof. Dr. F. J. Ramming

SFB 614 (Selbstoptimierende Systeme des Maschinenbaus; Teilprojekt B3 „Verhaltensorientierte Selbstoptimierung“, Teilprojekt B3 „Virtual Prototyping“, Teilprojekt C3 „Agentenbasierte Regler“)

Universität Paderborn: Fakultät für Elektrotechnik, Informatik und Mathematik, Fakultät für Maschinenbau, Fakultät für Wirtschaftswissenschaften, C-LAB – Cooperative Computing & Communication Laboratory

r2b: robots2business; 10/2006 – 12/2010

days Vertriebs- und Entwicklungsgesellschaft GmbH, CLAAS Selbstfahrende Erntemaschinen GmbH, LINEAS-Project Services GmbH, LMS Landwirtschaftsberatung GmbH, Putzmeister AG, Siemens AG (seit 10/2010 Siemens IT Solutions and Services GmbH), Forschungsinstut für Rationalisierung e. V. an der RWTH Aachen, Universität Karlsruhe

BIS-Grid, Betriebliche Informationssysteme: Grid-basierte Integration und Orchestrierung; 04/2007 – 04/2010

CADsys Vertriebs- und Entwicklungsgesellschaft mbH, CeWe Color AG & Co. OHG, Kieselstein GmbH, OFFIS e. V., Siemens AG (seit 10/2010 Siemens IT Solutions and Services GmbH), Universität Paderborn, Technische Universität Berlin

EUROPÄISCHE FÖRDERPROJEKTE / EUROPEAN FUNDED PROJECTS

OSAMI, OSAMI Commons (Open Source Ambient Intelligence) – Software-Plattform für flexible Dienstesysteme über Geräten und eingebetteten Systemen; 07/2008 – 06/2011
MATERNA GmbH, Siemens AG (seit 10/2010 Siemens IT Solutions and Services GmbH), ProSySt, Coscience GmbH & Co. KG, Schlüchtermann-Schiller’sche Kliniken, OFFIS e. V., Technische Universität Dortmund, Universität Paderborn, Universität Rostock

SOGRO; Sofortrettung bei Großunfall mit Massenanfall von Verletzten: Grundlegende Untersuchungen zum Einsatz von RFID-basierten Systemen zur Triagerie mit Leitstellenanbindung; 02/2009 – 01/2012
Andres Industries AG, Universität Stuttgart, Universität Paderborn, Universität Freiburg, Deutsches Rotes Kreuz Frankfurt, Siemens AG (seit 10/2010 Siemens IT Solutions and Services GmbH)

Optical Link; Hochintegrierter Optical Link zur kosten- und energieeffizienten, hochbeträgigen Datenübertragung im Kurzstreckenbereich; 04/2009 – 02/2012
Innolume GmbH, Fujitsu Technology Solutions, TU Dortmund, Universität Paderborn

VERDE; Verification-oriented & component-based model driven engineering for real-time embedded systems; 06/2009 – 05/2012
Robert Bosch GmbH, FZI Forschungszentrum Informatik an der Universität Karlsruhe, Infineon Technologies AG, ScopeSET Technology Deutschland GmbH, items GmbH, Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V., Arium GmbH, Universität Paderborn

HYDRA; Networked Embedded System middleware for Heterogeneous physical devices in a distributed architecture; 07/2006 – 12/2010
C. International Ltd. (UK), CNET Svenska AB (SE), Fraunhofer Gesellschaft zur Förderung der angewandten Forschung e. V. (DE), In-Jet APS (DK), Primary APS (DK), T-Connect S.R.L. (IT), Telefonica Investigación y Desarrollo SA Unipersonal (ES), Aarhus Universität (DK), Innova S.P.A. (IT), The University of Reading (UK), MESH-Technologies A/S (DK), Siemens AG (seit 10/2010 Siemens IT Solutions and Services GmbH) (DE) und Technica Universität Koschiach (SK)

MonAMI; Mainstreaming on Ambient Intelligence; 09/2006 – 05/2011
Swedish Handicap Institute (SE), OpenHub (UK), University of Zaragoza (ES), France Telecom (FR), Électricité de France (FR), Kungliga Tekniska Hoegskolen (SE), London School of Economics (UK), HMC International (BE), Siemens AG (seit 10/2010 Siemens IT Solutions and Services GmbH) (DE), Telefonica I+D (ES), Trialog (FR), Technical University of Kosice (SK), University of Passau (DE) und Europ Assistance France (FR)

HaptiMap; Haptic, Audio and Visual Interfaces for Maps and Location-Based Services; 09/2008 – 08/2012
Queen’s University Belfast (UK), University of Glasgow (UK), Fundacion Robotiker (ES), OFFIS e. V. (DE), Commissariat a l’Energie Atomique (FR), Siemens AG (seit 10/2010 Siemens IT Solutions and Services GmbH) (DE), Geodeettinen Laitos (FI), BMT Group Limited (UK), Aarhus University (DK), University of Verona (IT), Artificial Intelligence (IT), University of Paderborn (DE), University of Reading (UK), University of Cantabria (ES)

SANITAS; Sichere Systeme auf Basis einer durchgängigen Verifikation entlang der gesamten Wertschöpfungskette; 10/2009 – 09/2012
Fraunhofer Gesellschaft zur Förderung der angewandten Forschung e. V., FZI Forschungszentrum Informatik an der Universität Karlsruhe, Infineon Technologies AG, MICRONAS GmbH, Robert Bosch GmbH, Siemens AG, Tieto Deutschland GmbH, Universität Bremen, OFFIS e. V., Technische Universität München, Eberhard-Karls-Universität Tübingen, Universität Paderborn

TIMMO-2-US; Timing Model – TOols, algorithms, languages, methodology, USE cases; 10/2010 – 09/2012

MARION; Mobile autonome, kooperative Roboter in komplexen Wertschöpfungsketten; 08/2010 – 07/2013
STILL GmbH, Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, CLAAS Selbstfahrende Erntemaschinen GmbH, Siemens AG (seit 10/2010 Siemens IT Solutions and Services GmbH)

E-MOBIL; Simulationsgestützter Entwurf für Elektrofahrzeuge; 12/2010 – 01/2014
dSPACE GmbH, IMeC S.p.A & Co. KG, Infineon Technologies AG, Universität Paderborn (LEA und C-LAB)

Europaerische Förderprojekte / European funded projects

AUSSTELLUNGEN / EXHIBITIONS

CeBIT, Hannover, SimoBIT auf dem Stand des BMWi, Präsentation von R2B, 2. – 6. März

RoboCup German Open, Magdeburg, 15. – 18. April (Paderkicker-Teilnahme)

FieldRobotEvent 2010, Braunschweig, 11. Juni (Abschluss des Projektes R2B)

Interschutz 2010, Leipzig, 07. – 12. Juni

ICT 2010, Brüssel, 27. – 29. September (Präsentation des Projektes MonAMI)

Paderborner Wissenschaftstage, Heinz Nixdorf Museumsforum: useTable, Paderborn, 05. – 07. Juli

Dallas Touch, Frankfurt am Main, R2B-Projektpresentation, 22. – 23. November
WISSENSCHAFTLICHE ZUSAMMENARBEIT / COLLABORATION IN TECHNICAL SCIENTIFIC BODIES

GI, GMM, ITG:
Member of GI FB TI „Technical Informatics“ (F. J. Rammig)
Member of GI FB HCI „Human-computer-interaction“ (K. Nebe)
Stellvertretender Sprecher der RSS Fachgruppe 4, „Beschreibungssprachen und Modellierung von Schaltungen und Systemen“ (W. Müller)

IFIP:
Vice Chair of IFIP WG 10.2 Embedded Systems (B. Kleinjohann)
Publication Chair of IFIP WG 10.2 Embedded Systems (L. Kleinjohann)
German National Representative to IFIP TC10 (F. J. Rammig)
Member of IFIP WG 10.5 (F. J. Rammig)
Member of IFIP WG 10.2 Embedded Systems (F. J. Rammig)

ACM, IEEE:
Member of ACM (K. Nebe, W. Müller, H. Fischer)
Member of IEEE Computer Society (W. Kern, F. J. Rammig, W. Müller)
Member of ACM SIGDA (W. Müller)

EOS:
Member of European Optical Society (J. Schrage)

ITEA2:
Member of the ITEA2 Board (Information Technology for European Advancement) (W. Kern)

OTHERS:
Mitglied von acatech, Deutsche Akademie der Technikwissenschaften und Mitglied im Lenkungskreis des Themennetzwerks IKT (F. J. Rammig)
Vorstandsmitglied Software Quality Lab (s-lab) (F. J. Rammig)
Chairman of the Board InnoZent OWL e. V. (Regional Association for the Promotion of Internet Technologies and Multimedia Competencies) (W. Kern)
Mitglied der Nordrhein-Westfälischen Akademie der Wissenschaften und Künste und Sprecher der Fachgruppe Informatik in der Klasse für Ingenieur- und Wirtschaftswissenschaften (F. J. Rammig)
Mitglied des zentralen Vergabeausschusses der Alexander von Humboldt Stiftung (F. J. Rammig)
Vorstandsmitglied der Paderborner International Graduate School on Dynamic Intelligent Systems (F. J. Rammig)
Vorstandsmitglied des Paderborner Center for Parallel Computing (F. J. Rammig)
Member of the Microphotonics Industry Consortium Board at the Massachusetts Institute of Technology, MIT (J. Schrage)
Mitglied und Beisitzer des Vorstands von EDAD, Europäisches Institut Design für Alle in Deutschland e. V. (K.-P. Wegge)
Leitung des BITKOM-Fachausschusses Barrierefreiheit (K.-P. Wegge)
Leitung des ZVEI-Arbeitskreises Design for All (K.-P. Wegge)
Mitarbeiter des DIGITALEUROPE eAccessibility Cluster (K.-P. Wegge)
Mitarbeiter des DIGITALEUROPE eInclusion Clusters (K.-P. Wegge)
Mitarbeiter des DIGITALEUROPE DTV Clusters (K.-P. Wegge)
Mitarbeiter der CECED Working Group New Approach, Safety and Accessibility (K.-P. Wegge)
Gast der VDE AAL-Initiative, Ambient Assisted Living (K.-P. Wegge)
Mitglied des German Chapter der Usability Professionals’ Association e. V. (German UPA) (C. Weiland)
Mitglied der Arbeitsgruppe Usability Engineering & Software-Ergonomie der Deutschen Akkreditierungsstelle GmbH (DAkkS) (ehemals Deutschen Akkreditierungsstelle GmbH) (K. Nebe, H. Fischer)
Member of Usability Professionals’ Association (UPA) (K. Nebe, H. Fischer)
PROGRAM COMMITTEES, ORGANIZATION OF SESSIONS AT CONFERENCES:

Program Committee Member, IEEE Photonics Society Winter Topical Meetings, Palma de Mallorca, Spain, January 2010 (J. Schrage)

Program Committee Member, SMT/HYBRID/PACKAGING 2010, Nürnberg, Germany, May 2010 (J. Schrage)

Mitglied im Programmkomitee der Mensch und Computer 2010 (K. Nebe)

Mitglied im Programmkomitee des Workshops: Informations- und Kommunikationsdienste im Notfallmanagement, auf der GI Jahrestagung 2010 (K. Nebe)

Reviewer der International Conference on Advances in Computer Entertainment Technology (ACE2010) (K. Nebe)

PC Chair, Program Committee, DIPES 2010: 7th IFIP Working Conference on Distributed and Parallel Embedded Systems, Brisbane, Australia, September 2010 (B. Kleinjohann)

Organizing Chair, Program Committee, DIPES 2010: 7th IFIP Working Conference on Distributed and Parallel Embedded Systems, Brisbane, Australia, September 2010 (L. Kleinjohann)

DEUTSCHE NORMUNG (DIN/DKE)

Leitung, DIN NA 023-00-02 GA: Grundlagen zur barrierefreien Gestaltung/Accessibility (K.-P. Wegge)

Mitglied, DIN NA Erg BR: Beirat des Normenausschusses Ergonomie im DIN (K.-P. Wegge)

INTERNATIONALE NORMUNG (ISO/IEC)

Mitarbeiter, ISO TC159 AGAD: Advisory Group for Accessible Design (K.-P. Wegge)

Mitarbeiter, ISO TC 159 GA (Ergonomie-Lenkungsausschuss) (K.-P. Wegge)

Leitung der deutschen Delegation, ISO TC159 WG2: Ergonomics for People with Special Requirements (K.-P. Wegge)

Mitglied, ISO TC159 WG2: Ergonomics for People with Special Requirements (C. Weiland, M. Dubielzig)

Mitarbeiter, ISO/IEC JTC1: SWG Accessibility (K.-P. Wegge)

Mitarbeiter, IEC TC59 WG11: Accessibility and Usability of household electrical appliances (K.-P. Wegge, C. Weiland)

EUROPÄISCHE NORMUNG (CEN/CENELEC/ETSI)

Leitung der deutschen Delegation, CEN BT/WG185: eAccessibility (K.-P. Wegge)

Mitarbeiter, CEN BT/WG: CEN Guide 6 – implementation mechanism (K.-P. Wegge, C. Weiland)

Mitarbeiter, CEN ICT Standard Board, Sub Group DATSCG: Design for All and Assistive Technologies Standardization Co-ordination Group (K.-P. Wegge)

Mitglied, CEN Workshop: UD-PROF, Curriculum for training ICT professionals in Universal Design (K.-P. Wegge, C. Weiland)
GREMIEN / BOARD MEMBERS

■ VORSTAND / EXECUTIVE BOARD OF DIRECTORS ■

Herr Dr. Kern
Siemens (*)
Herr Prof. Dr. Rammig
Universität Paderborn

■ VORSITZENDER DES BEIRATES / CHAIRMAN OF THE ADVISORY BOARD ■

Herr Prof. Dr. Hauenschild

■ MITGLIEDER DES BEIRATES / MEMBERS OF THE ADVISORY BOARD ■

Frau Prof. Dr. Domik
Universität Paderborn
Herr Prof. Dr. Engels
Universität Paderborn
Herr Hauber
Siemens AG
(bis 30.09.2010)
Herr Littke
Siemens (*)
Herr Prof. Dr. Schuhmann
Universität Paderborn

■ KOOPTIERTE MITGLIEDER DES BEIRATES / ASSOCIATED MEMBERS OF THE ADVISORY BOARD ■

Herr Ahle
Siemens (*)
Herr Prof. Dr. Böttcher
Universität Paderborn
Herr Prof. Dr. Hauenschild
Universität Paderborn
Herr Dr. Heiß
Siemens AG
Frau Jekal
Siemens (*)
Herr Prof. Dr. Kleine-Büning
Universität Paderborn
Herr Korder
Siemens AG
(bis 30.09.2010)
Herr Dr. Luhn
Siemens AG
(bis 30.09.2010)
Herr Prof. Dr. Meerkötter
Universität Paderborn
Herr Prof. Dr. Mrozynski
Universität Paderborn
Herr Prof. Dr. Rosenberg
Universität Paderborn

(*) Die Siemens AG hat ihre IT-Sparte mit Wirkung zum 01.10.2010 in eine rechtlich eigenständige Gesellschaft, die Siemens IT Solutions and Services GmbH, ausgegliedert. Die neue SIS GmbH ist weiterhin ein Unternehmen innerhalb des Siemens-Konzerns.

On October 1, 2010, Siemens AG transformed its IT division into an independent legal entity (Siemens IT Solutions and Services GmbH) within the Siemens Group.

Stand: 01.12.2010 / Position as per 01.12.2010