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Abstract

Current model-based development processes offer new opportunities for ver-
ification automation, e.g., in automotive development. The duty of functional
verification is the detection of design flaws. Current functional system verifica-
tion approaches exhibit a major gap between requirement definition and formal
property definition, especially when analog signals are involved. Besides lack
of methodical support for natural language formalization, there does not exist a
standardized and accepted means for formal property definition as a target for
verification planning. This report addresses several shortcomings of embedded
system verification. An Enhanced Classification Tree Method is developed based
on the established Classification Tree Method for Embeded Systems CTM/ES. It
applies an actual hardware verification language to define and control a verifica-
tion environment.
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1 Introduction

This report describes an approach which supports the definition of a functional
verification plan for mechatronic systems with full support for testbench automa-
tion, traceability, visibility, and repeatability. We introduce a methodology to close
the gap between requirements and test definition by means of an enhanced
classification tree method (CTM). It supports functional stimulus patterns, ac-
ceptance criteria which are compatible to the stimulus definition, and test quality
criteria. The latter relate to requirements and they enable requirements cover-
age. Horizontal and vertical reuse is facilitated by the unified notation of the en-
hanced CTM. A concept for automation of the testbench execution is presented
to reduce cost- and time -intensive manual human intervention in the verification
process. ldeally, this leads to higher throughput of test cases due to reduced
setup times for faster or more intense testing.

1.1 Mechatronic vs. Electronic Systems Design

Todays mechatronic systems development processes are increasingly dealing
with a formal model of the mechatronic system, which enables code generation
as well as early verification of system features. Currently, model-based devel-
opment is an accepted methodology in mechatronics systems design, which is
being established in industry. The use of models and associated code generation
replaces traditional manual coding for electronic control units. The increasing de-
velopment productivity enables the creation of models of increasing complexity.
While code generation removes many sources of coding errors, it cannot remove
flaws in the models themselves. However, the use of models in mechatronic sys-
tems development opens up additional opportunities for verification. E.g., the
automotive industry applies test and simulation environments at several levels of
abstraction. Model-In-The-Loop (MIL) environments are applied to tests at model
level with, e.g., MATLAB/Simulink. The integration of hardware and software on
an embedded control unit (ECU) is being tested by means of a Hardware-In-
The-Loop (HIL) environment. Sometimes additional abstraction levels, such as
Software-In-The-Loop (SIL) and Processor-In-The-Loop (PIL) technologies are
applied. Recently, with increasing computation power, the construction of vir-
tual prototypes, i.e., a combination of behavioral and geometrical models, has
become feasible. The focus of existing technology is on efficiency gains in the
development and in the integration of models and hardware rather than exten-
sive verification. The existence of a formal mechatronic model, however, paves
the way towards extensive verification beyond the capabilities of a physical pro-
totype. With formal verification for mechatronic systems being introduced mostly
at research level, the most widespread mode of verification remains simulation
and testing. Existing test tools by, e.g., National Instruments, dSPACE, Etas,
Vector, and MBtech are rather specialized and apply proprietary languages and
proprietary concepts.
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Todays test patterns for mechatronic systems are either defined manually as
fixed waveforms, or generated automatically from models. Automatic test pattern
generation for mechatronic systems either derives test patterns from the model-
under-test itself, or it requires the redundant creation of a reference model at
the same level of abstraction [SZ06]. The drawback of the first approach is that
it does not support the generation of test patterns to detect missing functional-
ity. The drawback of the second approach is that it requires the development of
another model of similar complexity as the model-under-test. Both approaches
derive their test patterns from models instead of from requirements. The rela-
tion of requirements to a model and, consequentially, to generated test patterns,
remains unspecified.

1.1.1 Classification Tree Method CTM and CTM/ES

Classification Trees were introduced during the early 90s by Grimm and Grocht-
mann for the structured representation of test cases [Gri95, |GG93]. The con-
struction of classification trees and their associated combination tables is sup-
ported by the Classification-Tree Method (CTM), which is derived from the cate-
gory partition method [OB88]. In its basic form, a classification tree and the ac-
companying combination table describe abstract high-level test cases in a graph-
ical manner without an explicit notion of time. Since 1999, the method and no-
tion has been enhanced by Conrad and Fey to accommodate the description of
time-dependent test scenarios termed test sequences [Con05, ICDFY99]. These
extensions are known as the Classification-Tree Method for Embedded Systems
CTM/ES. The CTM/ES has recently been successfully employed in different con-
trol software development projects [LBE™05]. One of the main application areas
is the testing of in-vehicle software developed in a model-based way [Rau02].
Strengths of the CTM/ES approach are the description of time-continuous test
patterns [CKO06], it may also be applied as a front-end to Time Partition Testing
[Leh0Q].

The CTM/ES is mainly applied in the automotive domain. Several tools exist for
editing classification trees (CTE/XL, Razorcat CTE) and for test data derivation
support (MTest). The syntax of classification trees is a simple graphical notation.
Its main advantage is the combination of discrete and continuous elements by
means of interpolation for stimuli generation. Randomized stimuli instantiation
is supported. However, it does not provide a gradual path towards directed test
data definition.

1.1.2 Functional Verification

In the domain of electronic design the concept of model-based engineering
across several levels of abstraction has been employed for several decades.
Formal verification, simulation and testing are employed on a regular basis. The
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Figure 1: Verification Plan, Requirements and Mechatronic Model

increasing demand for verification at an early abstraction level, like system level,
has led to the creation and introduction of methods and languages for functional
verification. Functional verification is a methodology, which encompasses formal
verification as well as simulation approaches. It builds on the declarative formu-
lation of design properties as formal requirements, which provide a redundant
path from natural language and semi-formal requirements to the design to en-
able consistency checks. Once defined, the formal properties can be applied for
formal verification as well as for verification by simulation. Meanwhile, libraries
and methodological guidelines have become available to supplement the tool-
ing and standardization efforts, such as the Verification Methodology Manual for
SystemVerilog and the Open Verification Methodology. Today, the domain of
electronic design is able to apply a complete methodology for functional verifica-
tion of digital designs [BMPQ7].

2 Shortcomings of Mechatronic System Verification

Model-based development requires a thorough verification approach at modeling
level before any code generation and implementation on an execution platform
is performed. Generally, for verification purposes a requirements document in
model-based development has to be accompanied by a verification document,
the so-called verification plan. This document captures information, which does
not belong into the requirements document, but is yet essential for successful
implementation of a substantial verification task. As shown in figure (1| require-
ments guide the development of a mechatronic system model, whereas the ver-
ification plan determines verification goals, which are derived from the require-
ments as well. For testing purposes, the verification plan also needs to determine
the actual system interfaces from the actual model-under-test. On application to
the model-under-test, execution of the verification plan connects a testbench to
the model interfaces, which then provides stimuli to the model-under-test, ob-
tains measurements from it and provides verification results to the verification
engineer.
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In comparison to the electronic design verification approach, we observe sev-
eral methodical shortcomings in mechatronic system verification.

1. Support for traceability and visibility is limited.

2. A methodical gap exists between requirements and testbench definition for
mechatronic systems. This is due to

a) missing methodical support for the derivation of test descriptions from
natural language requirements,

b) missing stimulus patterns which describe requirements,
C) missing requirements-based acceptance criteria,

d) missing test quality criteria for requirements coverage, which are eas-
ily derived,

3. Missing horizontal and vertical re-use of test definitions.

The limited support for traceability and visibility is due to the lack of functional
coverage definitions, which can provide an independent means of requirement
coverage measurement for tracing tested requirements, and for visibility of the
current state of verification. The methodical gap from requirements exists for sev-
eral reasons: a methodical support for derivation of test descriptions requires a
suitable target. As most requirements allow an infinite number of possible stimuli,
a directed stimulus definition cannot capture such a requirement, as it represents
a single instance of stimulus only. However, the CTM/ES provides a first step
for the definition of functional stimulus patterns. The definition of requirements
based acceptance criteria for automatic acceptance evaluation is only possible
usually by definition of accepting predicates. Existing predicate languages do
not cover the definition of characteristic acceptance criteria for continuous sys-
tems. Existing proposals for test quality criteria are usually based on structural
coverage criteria, which do not easily relate to requirements. Moreover, the re-
use of test descriptions is only possible with high effort. Similar drawbacks have
been described for mixed-signal verification in [CHO7].

3 Example System: RailCab Suspension-Tilt Module

RailCab is a linear motor driven train system developed by the University of
Paderborn [TMVO06]. RailCab is based on shuttles, which are composed of mod-
ules, which are arranged as shown in figure[2l The coach body is mounted on
two suspension-tilt modules, which are used for active suspension and tilting.
The suspension-tilt modules are coupled to the active guidance modules via air
springs. The active guidance modules can actively rotate the axles relative to
the rails to avoid striking the flange against the rail head, they also facilitate the
driving through passive shunting switches. The rotors of the linear motor form
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Figure 2: Modules of the RailCab Shuttle

the driving modules which provide propulsion and braking force. The active sus-
pension system of the shuttle does without passive dampers in order to avoid
the propagation of high-frequency disturbance into the coach body. The forces
necessary for the damping are computed by the control and transferred to the
body by displacing the spring bases via hydraulic cylinders [Gei06].

The suspension-tilt module is the sub-system which links the active guid-
ance modules and the coach body of the shuttle. A model of the system ex-
ists as a MATLAB/Simulink model. The model captures the functionality of one
suspension-tilt module. It also contains a model of the coach body, and a model
of the hydraulic system. The model controls the body position relative to the
guidance modules. The elevation, the lateral position of the body, and its angle
relative to the longitudinal axis is controlled. The controller and plant is influ-
enced by the hydraulic pressure, and by disturbing forces. The coach body is to
be controlled to provide maximum comfort for the passengers.

The examples in the following section describe a verification plan for a perfor-
mance test of the suspension-tilt module.

4 Systematic Testing of Mechatronic Systems

Main goal of this new approach to systematic testing of mechatronic systems is
to narrow the methodical gap between requirements and testbenches. Existing
methods for functional verification and testing of mechatronic systems lack in ex-
pressiveness and do not cover all areas of functional verification. Moreover, there
is no accepted and standardized test definition language for control systems. An
important precondition for a clean verification process is a plan. The concept
of a verification plan is not new, however, current concepts and tools for testing
mechatronic systems do only support a limited subset of the aspects of a verifica-
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Figure 3: Verification Plan for Systematic Testing

tion plan. A verification plan has to support traceability, visibility, and repeatabil-
ity. Traceability of the verification plan is provided by links between requirements
and verification plan artifacts, namely stimulus definitions, test quality criteria and
acceptance criteria. As the purpose of testing is bug hunting, requirement viola-
tions are traced from violated acceptance criteria. Test “completeness” is traced
from test quality criteria, which describe covered requirements. Visibility of the
state of verification is provided by such requirements coverage. Repeatability in
model-based development is maintained through a deterministic simulation and
test environment.

Similar to the functional requirements document as a design specification, the
verification plan assumes the role of the verification specification. This document
captures information, which does not belong into the requirements document, but
is yet essential for successful implementation of a substantial verification task.
While the requirements are being implemented, concurrently the verification plan
has to be implemented. The implementation of a verification plan frequently
consumes resources in the order of the design and model implementation. In-
creased efficiency in the process of verification plan generation and execution
therefore results in substantial savings in the overall development process.

4.1 New Concept for Systematic Testing of Mechatronic Systems

Figure 3| gives an overview of the new concept for systematic testing of mecha-
tronic systems. The verification plan is based on the requirements and a
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so-called principle solution, which is a first step in requirements formalization
[ADGT08]. For increased flexibility and precision of stimulus definition, con-
straints are applied for declarative stimulus definition, supported by a graphical
notation similar to the CTM/ES. A new approach to acceptance criteria defini-
tion is introduced, which applies a graphical notation similar to CTM/ES. A new
CTM/ES-like notation is applied for functional coverage definition.

Stimulus definition with constraints allows requirement based stimulus pattern
definitions, which can be more accurately targeted for improved test quality: The
declarative nature of the constraint-based stimulus patterns enables automatic
generation of a wide range of stimuli. As more implementation details become
available, the declarative stimulus patterns can be adapted in a straightforward
manner. The new notation for acceptance criteria complements the stimulus pat-
tern definition and it enables automatic acceptance criteria generation together
with stimuli generation for fully automatic testbench execution. Moreover, the
level of abstraction of the acceptance criteria definition is different from that of
the model-under-test. The expensive creation of a reference model at the same
level of abstraction can therefore be avoided for automatic acceptance evalu-
ation. Test quality criteria define verification goals. These criteria encompass
structural coverage metrics, usually. Structural coverage metrics, however, do
not enable the derivation of requirements coverage. Recently, in the domain of
electronic design, additional test quality criteria have been introduced by means
of functional coverage. There are no approaches to functional coverage defini-
tion for mechatronic systems, which seamlessly fit into a verification process. A
new approach to functional coverage definition for mechatronic systems is de-
fined, which relates to requirements and enables requirements coverage deriva-
tion.

The definition of a unified CTM/ES notation for stimulus, acceptance criteria,
and test quality criteria immediately enables exchange and re-use of informa-
tion between, e.g., the stimulus and functional coverage aspects of the notation.
Functional coverage definition is a tedious process usually, which can be allevi-
ated by the derivation from previous stimulus pattern definitions.

The test control is described by means of the verification languages for ex-
ecution of the testbench elements. Current industrial approaches to automatic
testbench generation and execution are able to extract a subsystem from a sim-
ulation model for, e.g., MATLAB/Simulink. The extracted subsystem interfaces
are then mapped into a testbench for automatic execution. One example of
such a system is AutomationDesk from dSPACE. The automotive testbench fea-
tures lack in expressivity though in comparison to state-of-the-art “intelligent test-
benches” as exist for electronic design [BMPQ/, ITRO8].

4.2 Enhanced CTM for Constraint-based Stimulus Patterns

The original CTM/ES stimuli generation process is rather monolithic and inflex-
ible. It takes a classification tree, instantiates it by means of certain heuristics,
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Figure 4: CTM/ES vs. Enhanced CTM Stimuli Generation Process

CTM/ES Enhanced CTM

Randomized instantiation + +
Constraint based randomized instantiation - +
Synchronization Points with fixed time + +
Synchronization Points with constraint based time - +
Integration with Verification Language - +

+ : supported
- : unsupported

Table 1: Stimulus pattern definition with enhanced CTM

interpolates between synchronization points and discretizes the stimulus for test
input as illustrated in figure [d The enhanced CTM provides a new syntax for the
constraint based definition of synchronization points, which allows an the defini-
tion of constraints between synchronization point timing and value instantiation.

The new and enhanced stimuli generation process is based on a verification
language (VL). The classification tree and constraints are mapped to the ver-
ification language, which controls the further generation process of constraint
solving, interpolation, and discretization. A randomized constraint solver re-
places the former instantiation step. Then, interpolation and discretization are
performed under control of the verification language. The mapping and integra-
tion of the CTM syntax to a verification language allows to use verification lan-
guage elements such as additional constraints with the classification tree. This
provides a higher control over the value instantiation, as it enables the definition
of dependencies between classifications and synchronization point times. The
enhancements over CTM/ES are summarized in table [l

4.3 Enhanced CTM for Acceptance Criteria

Automatic acceptance evaluation is performed by correlation to a reference model
or by predicate evaluation [GCFT06, (GM06]. The definition of continuous, in-
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terpolated behavioral boundaries is not covered by current assertion languages,
therefore a reference model is required for correlation purposes. The new accep-
tance criteria based on an enhanced CTM notation can provide such a reference
model at the same level of abstraction as the stimulus pattern definition with en-
hanced CTM. This replaces the effort of redundant creation of a reference model
at the same abstraction level as the model-under-test. The acceptance criteria
do not attempt to capture the exact behavior of the complete model-under-test,
they rather set acceptable behavioral boundaries for a certain operational range
of the model-under-test. From the CTM representation an acceptance evaluator
in a verification language like SystemVerilog is generated. Assertions provided
by the verification language supplement the acceptance criteria for reporting test
results. They provide the link to the testbench evaluation infrastructure of the
underlying execution environment.

Instead of the CTM value intervals used for stimuli generation, functions are
specified. They describe the expected functional input-output relation of the
model-under-test for a specific operational range. At each acceptance criteria
synchronization point, a functional relation is selected, which is then evaluated
in relation to the synchronization points of the stimulus. The acceptance criteria
represent properties derived from the requirements and from control-theoretic
quality criteria, such as transient overshoot, and stabilization time. The defini-
tion of a functional relation to certain stimuli definitions enables an exact and
automatic evaluation of the system behavior for automatically generated stimuli.

4.4 Enhanced CTM for Functional Coverage

The concept of functional coverage definition [Piz04] has been transferred to
classification trees [KMQ6, [KMO7] for the definition of functional coverage criteria
for mechatronic systems. A classification tree with its value ranges and associ-
ated combination table provides the basis for the definition of relevant functional
coverage criteria. The concept encompasses the coverage definition for value
intervals on specific signals, the cross-coverage of value intervals on several
signals, and the (cross-) coverage of transition sequences between the value in-
tervals. The benefit of using classification trees for this purpose is twofold: they
alleviate the task of initial formulation of functional coverage criteria and they en-
able hierarchical reuse of classification tree based stimuli definitions, e.g., from
previous test definitions for sub-systems. The operational ranges of mechatronic
controls can be captured as test quality criteria, without dependency on a con-
crete implementation of the system. In short, the CTM stimulus aspect controls
the operational ranges of a system, whereas the CTM functional coverage as-
pect observes the activated operational ranges of a system for independent test
quality evaluation.

The new CTM notation for functional coverage definition builds on the concept
of coverpoints employed by the major hardware verification languages in elec-
tronic design. Coverpoints are associated to one or more signals and measure
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the occurrence of several ranges of values, or sequences thereof. Cross cov-
erpoints deal with multiple signals and their value combinations. By means of
measurements defined by such a functional coverage metric can be determined,
whether movement of e.g. a suspension-tilt platform has been stimulated in se-
lected directions with different ranges of hydraulic pressure. Stimulus definitions
can be used as a basis for such metric definitions, as the syntax of the combina-
tion table remains identical.

5 Conclusion

This report explained a new methodology and formalism for the systematic ver-
ification of embedded control systems. The formalism enables the definition of
formal behavioral properties for a model-based functional verification approach.
It applies the new Enhanced Classification Tree Method, which was developed
based on the established Classification Tree Method for Embeded Systems
CTM/ES. A current hardware verification language was applied to definition and
control of a verification environment. The new methodology provides improved
traceability and visibility for the verification process. It closes the gap between re-
quirements and testbench definition for embedded control systems (i) by support
for stimulus patterns capturing requirements, (ii) by support for requirements-
based acceptance criteria for automatic acceptance evaluation compatible to the
stimulus definition avoiding the creation of a reference model at the same level
of abstraction as the model, and (iii) by support for test quality criteria, which
relate to specific requirements and enable requirements coverage. Furthermore,
horizontal and vertical re-use of test definitions is enabled by means of a unified
notation.
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