Locating RFID Tags

Matthias Benesch, Siegfried Bublitz
Siemens AG

C-LAB Report

Vol. 8 (2009) No. 3
Cooperative Computing \& Communication Laboratory

ISSN 1619-7879
C-LAB ist eine Kooperation
der Universität Paderborn und der Siemens AG
www.c-lab.de
info@c-lab.de

C-LAB Report

Herausgegeben von
 Published by

Dr. Wolfgang Kern, Siemens AG Prof. Dr. Franz-Josef Rammig, Universität Paderborn

Das C-LAB - Cooperative Computing \& Communication Laboratory - leistet Forschungs- und Entwicklungsarbeiten und gewährleistet deren Transfer an den Markt. Es wurde 1985 von den Partnern Nixdorf Computer AG (nun Siemens AG) und der Universität Paderborn im Einvernehmen mit dem Land Nordrhein-Westfalen gegründet.

Die Vision, die dem C-LAB zugrunde liegt, geht davon aus, dass die gewaltigen Herausforderungen beim Übergang in die kommende Informationsgesellschaft nur durch globale Kooperation und in tiefer Verzahnung von Theorie und Praxis gelöst werden können. Im C-LAB arbeiten deshalb Mitarbeiter von Hochschule und Industrie unter einem Dach in einer gemeinsamen Organisation an gemeinsamen Projekten mit internationalen Partnern eng zusammen.

C-LAB - the Cooperative Computing \& Cooperation Laboratory - works in the area of research and development and safeguards its transfer into the market. It was founded in 1985 by Nixdorf Computer AG (now Siemens AG) and the University of Paderborn under the auspices of the State of North-Rhine Westphalia.

C-LAB's vision is based on the fundamental premise that the gargantuan challenges thrown up by the transition to a future information society can only be met through global cooperation and deep interworking of theory and practice. This is why, under one roof, staff from the university and from industry cooperate closely on joint projects within a common research and development organization together with international partners. In doing so, C-LAB concentrates on those innovative subject areas in which cooperation is expected to bear particular fruit for the partners and their general well-being.

ISSN 1619-7879

C-LAB

Fürstenallee 11
33102 Paderborn
fon: $\quad+495251606060$
fax: $\quad+495251606066$
email: info@c-lab.de
Internet: www.c-lab.de
© Siemens AG und Universität Paderborn 2009
Alle Rechte sind vorbehalten.
Insbesondere ist die Übernahme in maschinenlesbare Form sowie das Speichern in Informationssystemen, auch auszugsweise, nur mit schriftlicher Genehmigung der Siemens AG und der Universität Paderborn gestattet.
All rights reserved.
In particular, the content of this document or extracts thereof are only permitted to be transferred into machine-readable form and stored in information systems when written consent has been obtained from Siemens AG and the University of Paderborn.

Abstract

Computing the position of an RFID tag based on signals received at several RFID readers can be done with a mathematical model. However, real world constraints impact this approach. In this paper we detail a combination of strict mathematics and heuristic approaches for a specific set of tags and readers.

Contents

1 Introduction 4
1.1 RFID reader and tags 4
1.2 General Approaches. 4
2 Behaviour of RFID Reader. 5
3 Geometrical model of RFID Reader Locations. 6
4 Geometrical conditions 8
5 Position of RFID Tag 9
6 Adaptation of Position 10
6.1 Example. 12
7 Determining RFID Reader Circle Radius Size. 13
8 Conclusions. 14
9 References. 15

1 Introduction

We want to determine the position of an RFID tag based on signals received at different RFID reader stations.

For our purposes, a very limited model of RFID technology is sufficient. This will be described in the next section.

1.1 RFID reader and tags

An RFID reader is an equipment producing electromagnetic fields in its vicinity. An RFID tag is an equipment able to manipulate this electromagnetic field. This manipulation can be detected by the reader. This way, information is transmitted between reader and tag.

1.2 General Approaches

Determing the position of an RFID tag attached to a moving object - e.g. a person based on signals received by different RFID readers can be done in several different ways. One approach is to determine the signal strengths at different locations in the tracking area and create a map of this area showing the signal levels. When using this signal map, the real position is determined by comparing the actual signals with the ones from the map.

Another approach is to use a simple mathematical model based on balls and their intersections. In this paper we use this approach.

When there is no abstacle, the electromagnetic field is a ball with the reader as centre. All points with the same distance from the centre receive the same signal strength.

Model assumptions
We have the following assumptions for our model:

1. There is a set of RFID readers with fixed locations.
2. There are no obstacles: the signal strength of the electromagnetic field from a specific RFID is dependent on distance only.

This assumptions may sound naiive, and indeed they are. Nevertheless, this helps us in creating a basic model. At the end of this paper we discuss how to deal with obstacles.

2 Behaviour of RFID Reader

Each RFID reader is capable of generating a sequence of n different signal strengths $0<s_{0}<s_{1}<\ldots<s_{i-i}<s_{i} \ldots<s_{n-1}$. In our special case we have $n=4$ but this is not essential for the following considerations. In one round, the reader starts the first step by sending a signal of strength s_{n-1} and waits for reactions from tags for this signal strength. This is repeated with decreasing signal strengths until s_{0} is reached.

We consider a fixed RFID tag with distance $r>0$ from a fixed RFID reader. Let's assume the tag is receiving signals from the reader.

Let $s \in\left\{s_{0,} s_{1, \ldots}, s_{i-i}, s_{i}, \ldots, s_{n-1}\right\}$ be the weakest signal that is received by the tag. Let r_{i} be the largest possible distance where signals of strength s_{i} can be received by the RFID tag.

When the tag receives signals of strength s_{i} it will receive stronger signals as well and thus is located within the ball of radius r_{i}. If it does not receive weaker signals $s<s_{i}$ it is located outside the ball of radius r_{i-1}. Together, we have the condition $r_{i-1}<r \leq r_{i}$ if $s=s_{i}$.

Written in an algorithmic pseudo language, each reader executes the following steps:
Forever do
let dist $=0 \quad / /$ this means no signal received
for signal strength si from s4 to s1 do
send signal of strenght si
wait for reaction from RFID tags nearby
timeout according to predefined value ...
if reaction from tag
dist $=\mathrm{di}$
endif
end for
if dist > 0
echo 'tag is within distance ' . dist . ' from reader'
else
echo 'reader does not see tag'
endif
done

3 Geometrical model of RFID Reader Locations

For determing the position of one tag between different readers, we use the following approach:

Whenever there are distance values from at least 3 different readers available, we skip all but the 3 most tight circles. This results in 3 different circles.

We consider plain circles, but the computation is very similar in 3 dimensions as well. A detailed description of this concepts and the following mathematical results used can e.g. be found in [6].

Notation: In the following, capital letters always describe vectors and lowercase letters always describe scalar (or real) values. Vectors consist of components of real values, That means M is ($m 1, m 2$).

Two consecutive capital letters denote a scalar product, i.e.
$M N=m 1^{*} n 1+m 2^{*} n 2$ and $M^{2}=M M$.
For each pair of circles $K 1$ and $K 2$ with centres M and $N, M \neq N$, there is a straight line g running throught both centres. Let r be the radius of $K 1$ and s be the radius of $K 2$. If $r+s$ is larger than the distance between M and N, then there are 2 different intersection points Q and T between K1 and K2.

Let h be the straight line connecting Q and T. Then, h is perpendicular on g.

We compute the point P which is just the intersection of the straight lines g and h.
For all points X on the circular line of $K 1$, we have the following equation:
(1) $(X-M)^{2}-r^{2}=0$
and correspondingly for K2:
(2) $(X-N)^{2}-s^{2}=0$

For the straight line g we have
(3) $X=M+t(N-M)$

Subtracting (2) from (1) gives the following condition for T and Q :
(4) $0=(X-M)^{2}-r^{2}-\left((X-N)^{2}-s^{2}\right)=X^{2}-2 X M+M^{2}-r^{2}-\left(X^{2}-2 X N+N^{2}-s^{2}\right)=$

$$
2 X(N-M)+M^{2}-N^{2}-r^{2}+s^{2}
$$

This is just the definition of the straight line h.
Since P must fullfil both (3) and (4), we can insert the value for X from (3) in (4) and continue as follows:

(4') $0=2(M+t(N-M))(N-M)+M^{2}-N^{2}-r^{2}+s^{2}$

$$
\begin{aligned}
& =2 M N-2 M^{2}+2 t(N-M)^{2}+M^{2}-N^{2}-r^{2}+s^{2} \\
& =2 t(N-M)^{2}-(N-M)^{2}-r^{2}+s^{2}
\end{aligned}
$$

This can be solved to show t :

$$
\text { (5) } t=\frac{(N-M)^{2}+r^{2}-s^{2}}{2(N-M)^{2}}
$$

And thus P is according to (3)
(6) $P=M+\frac{(N-M)^{2}+r^{2}-s^{2}}{2(N-M)^{2}}(N-M)$
P is always a point on g. If Q and T coincide, which is true for

$$
(N-M)^{2}=(r+s)^{2}
$$

we have the situation where h is a tangent at $K 1$ and $K 2$ in P :

$$
\begin{aligned}
\left(6^{\prime}\right) P & =M+\frac{(N-M)^{2}+r^{2}-s^{2}}{2(N-M)^{2}}(N-M)=M+\frac{(r+s)^{2}+(r-s)(r+s)}{2(r+s)^{2}}(N-M) \\
& =M+\frac{2 r(r+s)}{2(r+s)^{2}}(N-M)=M+\frac{r}{r+s}(N-M)
\end{aligned}
$$

P is always a point on g but not necessarily between M and N. If

$$
r^{2}-s^{2}>(N-M)^{2} \text { we have for the fraction in (6): }
$$

$$
\left(6^{\prime \prime}\right) \frac{(N-M)^{2}+r^{2}-s^{2}}{2(N-M)^{2}}>1
$$

Inserted as value for t in (3) this means we have the situation of the following figure, where P is not between M and N.

4 Geometrical conditions

In order to exclude pathological situations, we have the following requirements.
The circles do not collapse:
(R1) $r>0$
(R2) $s>0$

The circles have different centres:

$$
(R 3) \quad M \neq N
$$

The centre of $K 2$ is not contained in $K 1$:
(R4) $(N-M)^{2}>r^{2}$
or alternatively: circle $K 2$ is not completely inside of $K 1$ (tangent is allowed):
(R4') $(N-M)^{2} \geq(r-s)^{2}$

The centre of $K 1$ is not contained in $K 2$:

$$
(R 5)(N-M)^{2}>s^{2}
$$

or alternatively: circle $K 1$ is not completely inside of $K 2$ (tangent is allowed):

$$
\left(R 5^{\prime}\right)(N-M)^{2} \geq(s-r)^{2}
$$

And when all these conditions are fulfilled, there is an intersection point P when the following condition is met:

$$
(R 6)(N-M)^{2} \leq(r+s)^{2}
$$

In the case of equality h is tangent at both circles.

5 Position of RFID Tag

Having computed (6) for the 3 corners A, B, C of all 3 pairs of combinations from the 3 circles, the actual position of the tag can be guessed as the centre of gravity S of the corresponding triangle, which is just

$$
\text { (7) } S=\frac{A+B+C}{3}
$$

6 Adaptation of Position

Taking the centry of gravity can mislead for triangles where e.g. A and C are closed to each other but B is far away. In this case, the centre of gravity S is too far away from both A and C and too close to B in contrast to the expected position of tracking.

For the following discussions, let E point to the middle of the segment between A and C, i.e.
(8) $E=\frac{A+C}{2}$

We move B on the line connecting B and E towards E, up to a distance equal to the one between A and C. If G denotes the new position of B, we have a new triangle (A, $G, C)$ where the formula (7) can be applied to determine the tracking position, of course with G substituting B.

Being on the line between E and B with the same distance as between A and C gives the following condition for G :
(9) $G=E+\sqrt{\frac{(A-C)^{2}}{(B-E)^{2}}}(B-E)$

Remember that there is a scalar product under the root, so we cannot shortcut here. Now (8) helps to substitute E, thus (9) becomes:

$$
\text { (10) } G=\frac{A+C}{2}+\sqrt{\frac{(A-C)^{2}}{\left(\frac{2 B-A-C}{2}\right)}}\left(\frac{2 B-A-C}{2}\right)=\frac{A+C}{2}+\frac{\sqrt{(A-C)^{2}}}{\sqrt{(2 B-A-C)^{2}}}(2 B-A-C)
$$

For the last equation we have applied the linearity of the scalar product. Now let us determine the terms under the root:

$$
\begin{equation*}
(A-C)^{2}=\left(a_{1}-C_{1}\right)^{2}+\left(a_{2}-c_{2}\right)^{2} \tag{11}
\end{equation*}
$$

and

$$
\begin{aligned}
& (12)(2 \mathrm{~B}-A-C)^{2}=\left(2 \mathrm{~b}_{1}-a_{1}-c_{1}\right)^{2}+\left(2 \mathrm{~b}_{2}-a_{2}-c_{2}\right)^{2} \\
= & 4 \mathrm{~b}_{1}^{2}-2 a_{1} b_{1}-2 b_{1} c_{1}-2 a_{1} b_{1}+a_{1}^{2}+a_{1} c_{1}-2 b_{1} c_{1}+a_{1} c_{1}+c_{1}^{2} \\
+ & 4 b_{2}^{2}-2 a_{2} b_{2}-2 b_{2} c_{2}-2 a_{2} b_{2}+a_{2}^{2}+a_{2} c_{2}-2 b_{2} c_{2}+a_{2} c_{2}+c_{2}^{2} \\
= & a_{1}^{2}-4 a_{1} b_{1}+2 a_{1} b_{1}+4 b_{1}^{2}-4 b_{1} c_{1}+c_{1}^{2} \\
+ & a_{2}^{2}-4 a_{2} b_{2}+2 a_{2} b_{2}+4 b_{2}^{2}-4 b_{2} c_{2}+c_{2}^{2}
\end{aligned}
$$

Using (11) and (12) show for the components of G directly from (10):

$$
\sqrt{(13) g_{1}=\frac{a_{1}+c_{1}}{2}+} \begin{aligned}
& \frac{\left(a_{1}-c_{1}\right)^{2}+\left(a_{2}-c_{2}\right)^{2}}{a_{1}^{2}-4 a_{1} b_{1}+2 a_{1} b_{1}+4 b_{1}^{2}-4 b_{1} c_{1}+c_{1}^{2}+a_{2}^{2}-4 a_{2} b_{2}+2 a_{2} b_{2}+4 b_{2}^{2}-4 b_{2} c_{2}+c_{2}^{2}}
\end{aligned}\left(2 b_{1}-a_{1}-c_{1}\right)
$$

and the same for the second component:

$$
\begin{gathered}
(14) g_{2}=\frac{a_{2}+c_{2}}{2}+ \\
\sqrt{\frac{\left(a_{1}-c_{1}\right)^{2}+\left(a_{2}-c_{2}\right)^{2}}{a_{1}^{2}-4 a_{1} b_{1}+2 a_{1} b_{1}+4 b_{1}^{2}-4 b_{1} c_{1}+c_{1}^{2}+a_{2}^{2}-4 a_{2} b_{2}+2 a_{2} b_{2}+4 b_{2}^{2}-4 b_{2} c_{2}+c_{2}^{2}}}\left(2 b_{2}-a_{2}-c_{2}\right)
\end{gathered}
$$

For ease of computation, it might be better to use a product version, so (13) becomes (15):

$$
\text { (15) } g_{1}=\frac{a_{1}+c_{1}}{2}+\sqrt{\frac{\left(a_{1}-c_{1}\right)^{2}+\left(a_{2}-c_{2}\right)^{2}}{\left(2 b_{1}-a_{1}-c_{1}\right)^{2}+\left(2 b_{2}-a_{2}-c_{2}\right)^{2}}}\left(2 b_{1}-a_{1}-c_{1}\right)
$$

and 14 becomes (16):

$$
\text { (16) } g_{2}=\frac{a_{2}+c_{2}}{2}+\sqrt{\frac{\left(a_{1}-c_{1}\right)^{2}+\left(a_{2}-c_{2}\right)^{2}}{\left(2 b_{1}-a_{1}-c_{1}\right)^{2}+\left(2 b_{2}-a_{2}-c_{2}\right)^{2}}}\left(2 b_{2}-a_{2}-c_{2}\right)
$$

6.1 Example

Let $A=(1,2), B=(21,6), C=(2,4)$, see the following picture where the y-coordinate runs downwards.

We do the following computations:

$$
\begin{gathered}
(17) S=\frac{A+B+C}{3}=\left(\frac{1+21+2}{3}, \frac{2+6+4}{3}\right)=(8,4) \\
E=\frac{A+C}{2}=\left(\frac{1+2}{2}, \frac{2+4}{2}\right)=(1.5,3) \\
2 b_{1}-a_{1}-c_{1}=2 * 21-1-2=39 \\
2 b_{2}-a_{2}-c_{2}=2 * 6-2-4=6 \\
g_{1}=\frac{1+2}{2}+\frac{\sqrt{1^{2}+2^{2}}}{\sqrt{39^{2}+6^{2}}}\left(39^{2}\right) \approx 3.71 \\
g_{2}=\frac{2+4}{2}+\frac{\sqrt{1^{2}+2^{2}}}{\sqrt{39^{2}+6^{2}}} 6 \approx 3.34 \\
S^{\prime} \approx\left(\frac{1+2+3.71}{3}, \frac{2+4+3.34}{3}\right) \approx(2.237,3.113)
\end{gathered}
$$

7 Determining RFID Reader Circle Radius Size

In this section we try to give a good estimation for the circle radius of a given RFID reader based on signal strength received from a fixed RFID tag.

The time is divided into cycles. In each cycle, a fixed tag sends for each of the 4 signal strengths several (4) packages containing the signal strength and the tag's id.

The reader receives a fraction of this packages and tries to determine the distance to the tag based on the signal strength and the fraction of packages received. This fraction can be adjusted to be the relative frequency of received packages compared to the total number of packages sent. This gives a bundle of functions computing the estimated radius for a given signal strength based on this frequency:
(18) $f_{s_{i}}:[0,1] \rightarrow \mathbb{R} \quad$ for $1 \leq i \leq 4$

We assume the left and right border of the interval to contain useless values which we try to keep off from being used for the subsequent computations. The best values expected shall be described this way:

$$
\text { (19) } f_{s_{i}}\left(x_{1}\right)=d_{i} \quad \text { for } 1 \leq i \leq 5 \quad \text { for example } \quad x_{1}=0.5
$$

Note that we have extended the values for the index i to contain an additional value (5). This will be needed later on.

The values computed here shall describe the radius for the fixed signal strength when receiving best.

This functions must be interconnected. The worst case values for smaller radius should correspond to the best cases values of the next larger radius:

$$
(20) f_{s_{i}}\left(x_{0}\right)=f_{s_{i}+1}\left(x_{1}\right) \quad \text { for } 1 \leq i \leq 4 \text { for example } \quad x_{0}=0
$$

Applying (19) to this gives:

$$
(21) f_{s_{i}}\left(x_{0}\right)=d_{i+1} \quad \text { for } 1 \leq i \leq 4
$$

Assuming the functions are linear (which means straight lines) in between, we have the following solution:

$$
\text { (22) } f_{s_{i}}(x)=\frac{d_{i}-d_{i+1}}{x_{1}-x_{0}}\left(x-x_{0}\right)+d_{i+1} \quad \text { for } 1 \leq i \leq 4
$$

And indeed, inserting the best value into (22) just gives:

$$
f_{s_{i}}\left(x_{1}\right)=\frac{d_{i}-d_{i+1}}{x_{1}-x_{0}}\left(x_{1}-x_{0}\right)+d_{i+1}=d_{i}-d_{i+1}+d_{i+1}=d_{i} \quad \text { for } 1 \leq i \leq 4
$$

But this is just (19). Furthermore:

$$
f_{s_{i}}\left(x_{0}\right)=\frac{d_{i}-d_{i+1}}{x_{1}-x_{0}}\left(x_{0}-x_{0}\right)+d_{i+1}=d_{i+1} \quad \text { for } 1 \leq i \leq 4
$$

Which is just (21).

8 Conclusions

Determining positions of RFID tags can start with a simple mathematical model but needs to be adjusted to real world constraints. Here, we took the freedom to introduce assumptions modifying our simple model towards real world effects. The realisation of this approach and the corresponding check within a real world project guided us and justified the appoach.

C-LAB Report

9 References

[1] Bublitz, S, Eikerling, H-J.: „Optimierung von Wartungs- und Instandhaltungsprozessen durch Wearable Computing", C-LAB Report, 2006
[2] Basiswissen RFID, http://www.info-rfid.de/downloads/basiswissen_rfid.pdf
[3] RFID-Studie 2007, Technologieintegrierte Datensicherheit bei RFID-Systemen, http://www.sit.fraunhofer.de/fhg/Images/RFID-Studie2007 tcm105-97982.pdf
[4] Stephan J. Engberg, Morten B. Harning, Christian Damsgaard Jensen: "Zeroknowledge Device Authentication: Privacy \& Security Enhanced RFID preserving Business Value and Consumer Convenience",
http://www.rfidsec.com/docs/PST2004_RFID_ed.pdf
[5] Berger, F.: „Kontextverarbeitung auf Basis von RFID bei der mobilen Wartung von komplexen Produkten", C-LAB Report, 2007
[6] Grotemeyer, K.-P.,.: „Analytische Geometrie", Gruyter, Walter de GmbH; Berlin, 1969

