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Abstract

Ontologies provide a means for modelling knowledge in computer processable form 

and properties play a fundamental role when designing ontologies. For fine-tuning 

knowledge, different kinds (or attributes) of properties are available. These kinds are 

defined  by   first  order  logic,  allowing  ontology  reasoning  tools  to  automatically 

generate additional knowledge which can be investigated by applications deploying 

ontology reasoners. This means the generated knowledge heavily depends on the 

kind of properties used in ontology modelling. In this paper we investigate how these 

property kinds differ, how they relate to each other and how this can be depicted 

graphically. Even so most of the results are quite obvious, we use a formal approach 

to deduce them exactly.
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1 Introduction and Notation
Ontologies  describe  the  domain  of  concept  of  a  problem area by using  classes, 
objects  and  properties.   Objects  are  instances  of  classes.  Properties  are  binary 
relations combining classes with classes thus providing properties between objects 
or  combining  classes  with  values  thus  providing  properties  between  objects  and 
values. A prominent language elaborating these concepts is OWL [1].

The  properties  can  be  specialized  and  of  different  kinds  so  to  fulfill  certain 
requirements which  are well  known from binary relationships within  mathematics. 
These kinds of properties are defined by the appropriate OMG standard and realized 
in  editing  environments  as  e.g.  Protégé  [2].  Handling  OWL  is  quite  ambitious, 
Bechhofer et. al. complain in [3] about „subtly different ways and confusion reigns“ 
when application developer interpret language specifications.

To  get  a  deeper  feeling  for  this  properties  and  how  they  can  be  combined,  a 
graphical representation is often very helpful. In this paper we transmit the logical  
restrictions induced by the different types of properties and show how this affects 
their  graphical  representation.  The  results  of  this  work  are  used  for  ontology 
modelling and incorporation in up-to-date research projects like OEPI [4].

1.1 Notation
If M is the set of all classes – or classes and value sets – used in the ontology, a 
property R is just a subset of the Cartesian product of M with itself:

For  a  pair i , j ∈R we say i in  the  domain of R is  associated with j in  the 
range of R .

Basically,  there  is  no  great  difference  when  observing  properties  on M×N for 
different sets M and N : Just substitute each component with the union of M
and N and we again have a property on identical component sets. This allows us 
not  to  have  to  distinguish  explicitly  properties  between  classes  and  classes,  or 
between classes and values, or between objects, etc.

As we are dealing with finite sets, we can identify M with a subset of the natural 
numbers,  that  is,  when n∈ℕ is  the  size of M , we  identify M= {1,... , n}. This 
allows  us  to  present R as  a  binary  matrix, r ij  ,1≤i , j≤n called  the  adjacency 
matrix of R with the definition:

Additionally, we have the ordering properties induced by natural numbers available in
M. In the following, we do not explicitly distinct between R and the corresponding 
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adjacency matrix as we can obviously construct one from the other and thus just 
write R=r ij . Formally, we have a bijection

which  allows  us  to  use  matrix  operations  or  set  operations,  whatever  is  more 
appropriate.

Let S be another property on M. The following operations known from elementary 
set theory are listed here just to agree upon notation:

• complement R={i , j ∈M×M ∣ i , j ∉R }  

• union R∪S={i , j ∈M×M ∣ i , j ∈R∨i , j ∈S }  

• intersection R∩S={i , j ∈M×M ∣ i , j ∈R∧i , j ∈S }  

• difference R ∖S={i , j ∈M×M ∣ i , j∈R∧i , j∉S }  

• the size of the set R , denoted ∣R∣, is the number of elements contained in 
the set R.

  Apart from this, the matrix structure allows the following definitions:

• inverse (mirrored, transposed) property R−1={i , j  ∣  j , i ∈R}  

• main diagonal D={i , i  ∣ i∈M }  

• row (horizontal line) at i : H i={i , j  ∣ j∈M }

• column (vertical line) at j : V  j ={i , j  ∣ i∈M }

1.2 Kinds of Properties in OWL

The following types of properties are defined in the OMG OWL2 specification:

• functional, i.e. each domain entry is associated to at most one range entry. 

• inverse functional, i.e. each range entry is associated to at most one domain 
entry.

• symmetric, i.e. if one entry is associated to another, the second is associated to 
the first one as well.
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• antisymmetric, two different entities can not be associated in both directions 
simultaneously. 

• asymmetric, i.e. if one entry is associated to another, the second is not 
associated to the first. 

• reflexive, i.e. each entity is associated to itself. 

• irreflexive, i.e. no entity is associated to itself.

• transitive, i.e. if one entry is associated to a second one and the second one 
associated to a third one, the first is associated to the third as well.

Having specified a property in an OWL ontology -  e.g.  in  an ontology editor  like 
Protégé [2] - and stated the property to be of one of the specified kinds means a 
reasoning tool will create associations (entries) which are demanded by this kind of 
property. Simultaneously, the reasoning tool will warn when entries are created which 
are prohibited by this kind of property.  The better understanding of the effects of 
modelling with different kinds of properties is a central topic of this paper. This helps 
to understand conclusions computed by the reasoner.

2 Kinds of properties

In this chapter we examine the kinds of properties used in OWL in more detail. We 
formulate the conditions stated in OWL in logical and set theoretical terms and give a 
graphical interpretation as well.

2.1 Functional properties

A functional property can be considered as a functional mapping from the domain to 
the range. Logically this means if two pairs are identical in the  first argument, they 
are identical in the second argument as well:

i , j ∈R∧i , k ∈R⇒ j=k.

or correspondingly: ∣R∩H i ∣ ≤1∀ i∈M.

If R is  total  functional,  i.  e.  for  every  element i∈M there  is j∈M with
i , j ∈R , we can write R as a function R :M M.

Graphical condition: Each row in the adjacency matrix ( H i  in 
the picture) contains at most one entry (with value 1). 

If R is total functional, each row contains exactly one entry.

Observation:  The  intersection  of  functional  properties  is 
functional as well.

C-LAB-TR-2011-02 Page 7 of 17

j
⋮

i ⋯ 1 ⋯ H i 
⋮



C-LAB Report 

2.2 Inverse Functional properties

For an inverse functional  property the inverse property is functional.  This  can be 
considered as a functional  mapping from the domain to  the range.  Logically  this 
means if two pairs are identical in the second argument, they are identical in the first 
argument as well:

i , j ∈R∧h , j ∈R⇒ i=h.

or correspondingly: ∣R∩V  j ∣ ≤1∀ j∈M.

If R−1 is  total  functional,  i.e. for every element j∈M there is
i∈M with i , j ∈R , we  can  write R−1 as  a  function
R−1:M M.

Graphical  condition:  Each  column  in  the  adjacency  matrix  (
V  j  in the picture) contains at most one entry (with value 1). 

If R−1 is total functional, each column contains exactly one entry.

Observation: The intersection of inverse functional properties is inverse functional as 
well.

2.3 Symmetric properties

The logical condition for symmetry is

i , j ∈R⇒ j ,i ∈R

or correspondingly: R−1=R.

Graphical condition: The adjacency matrix is mirrored at the main 
diagonal.

Observation:  The  intersection  of  symmetric  properties  is 
symmetric as well.

2.4 Antisymmetric properties

The logical condition for antisymmetry is 

i , j ∈R∧ j , i ∈R⇒i= j

or correspondingly: R−1∩R⊂D .
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Graphical  condition:  There  are  no  mirrored  entries  allowed, 
except on the main diagonal.

Observation:  The  intersection  of  antisymmetric  properties  is 
antisymmetric as well.

2.5 Asymmetric properties

The logical condition for asymmetry is 

i , j ∈R⇒ j , i ∉R

or correspondingly: R−1∩R=∅.

Graphical condition:  There are no mirrored entries allowed, not 
even on the main diagonal.

Observation:  The  intersection  of  asymmetric  properties  is 
asymmetric as well.

2.6 Reflexive properties

The logical condition for reflexivity is

i∈M⇒i , i ∈R

or correspondingly: D⊂R.

Graphical  condition:  The  main  diagonal  is  contained  in  the 
property.

Observation: The intersection of reflexive properties is reflexive as well.

2.7 Irreflexive properties

The logical condition for irreflexivity is

i∈M⇒i , i ∉R
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or correspondingly: D∩R=∅

Graphical condition: Every point in the main diagonal is excluded 
from the property.

Observation: The intersection of irreflexive properties is irreflexive as well.

2.8 Transitivity

Transitivity is more complex than the other kinds, so it is discussed here in more 
detail.

The logical condition for transitivity is

i , j ∈R∧ j , k ∈R⇒i , k ∈R.

2.8.1 The Transitive Hull

Each property R can be extended by putting additional  entries into  it  which  are 
demanded  by  the  transitivity  condition.  This  can  be  continued  until  the  resulting 
property is transitive. As the example with the complete property M×M shows, this 
is always possible. Furthermore, the result is independent from the insertion order of 
new entries. Therefore, the result is unique and is called the  transitive hull of the 
property,  noted  as R∗ and  formalized  as  the  smallest  transitive  property  that 
contains the original  one and is transitive.  Since the intersection of two transitive  
properties is transitive as well, we can define

Observation 1: R⊂R∗ .

Observation 2: R is transitive if and only if R=R∗ .

2.8.2 Graphical Construction of Transitivity

The  graphical  aspects  of  transitivity  are  depicted  by  the  following  picture.  The 
construction can be used to create the transitive hull of a given property.
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Graphically, the following is happening: Consider the point i , j  marked with 1 in 
the matrix. This point lies on the column V  j . The point where V  j  intersects 
the main diagonal is marked with ∗ in the matrix. Consider the row H  j  which 
contains  this  point.  Every  entry  marked 1 in H  j  corresponds  to  an  entry
 j , k  in R and transitivity requires an entry i , k  to exist, which is just an entry 

marked 1 in H i  at position k. We can say for the property R :  every entry in
H  j  induces the  existence  of  an  entry  in H i  in  the  same  column.  More 

suggestively: H  j  projects onto H i  , which is illustrated by the vertical arrow 
in the picture.

Observation  3: H i  contains  at  least  as  much  1's  as 
H  j : ∣R∩H  j ∣ ≤ ∣R∩H i ∣

Observation  4:  If  j , i ∈R then  H i  projects  on H  j  as  well.  This  means 
there is the same number of 1's at the same columns in H i  and H  j .

2.9 Simple Examples of Properties

Here are some examples of simple properties. The effects are illustrated in Table 1.

• Complete property R=M×M

• Empty property R=∅

•  Main Diagonal D={i , i  ∣ i∈M }

• Row (horizontal line) at i : H i={i , j  ∣ j∈M }

• Column (vertical line) at j : V  j = {i , j  ∣ i∈M }
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      R  

Reflexive

Irreflexive

 Symmetric

Asymmetric

 Antisymmetric

Transitive

Functional

Inverse Functional

M×M    +     +     +

∅     +     +      +     +     +    +    +

 D    +     +      +     +     +    +    +

H i      +     +     +   +

V  j      +     +     +   +

Table 1: Attributes of example properties

2.10 Observations on properties

Observation  on  reverse  property: If R is  reflexive,  irreflexive,  symmetric, 
asymmetric, antisymmetric, or transitive than R−1 is so as well. If R is functional 
than R−1 is inverse functional and vice versa.

Proof:

a) Assume R is reflexive. Then D⊂R and definition of  D gives D⊂R−1 , thus 
R−1 is reflexive.

b) Assume R is irreflexive. Then D⊂R and definition of D gives D∩R−1=∅ ,
thus R−1 is irreflexive.

c)  Assume R is  symmetric.  Let i , j ∈R−1 . Then  j , i ∈R. Symmetry  of R
requires i , j ∈R , which means  j , i ∈R−1 , thus R−1 is symmetric.

C-LAB-TR-2011-02 Page 12 of 17



C-LAB Report 

d) Assume R is asymmetric.  Let i , j ∈R−1 . Then  j , i ∈R. Asymmetry of R
requires i , j ∉R , which means  j , i ∉R−1 , thus R−1 is asymmetric.

e)  Assume R is  antisymmetric.  Let i , j ∈R−1∧ j , i ∈R−1. Then
 j , i ∈R∧i , j ∈R. Antisymmetry  of R requires i= j , thus R−1 is 

antisymmetric.

f) Assume R is transitive. Let i , j  , j , k ∈R−1 . Then  j , i  ,k , j ∈R. Transitivity 
of R requires k , i ∈R , which means i , k ∈R−1 , thus R−1 is transitive.

g) Assume R is functional. Let i , j ∈R−1∧h , j ∈R−1. Then  j , i ∈R∧ j , h∈R.
Functionality of R requires i=h , thus R−1 is inverse functional.

h)  Assume R is  inverse  functional.  Let i , j ∈R−1∧i , k ∈R−1 . Then
 j , i ∈R∧k ,i ∈R. Inverse  functionality  of R requires j=k , thus R−1 is 

functional□

The next  observations show certain kinds of property  combinations to  result  in a 
single property, the Diagonal.

Observation on reflexivity: If R is reflexive and functional or inverse functional, 
than R=D.  

Proof:  Let i , j ∈R. Because  of  reflexivity  we  have i , i∈R and  each  of 
functionality  or  inverse  functionality  requires i= j which  means i , i ∈R , thus
R⊂D. On the other hand reflexivity requires D⊂R , thus R=D. □ 

Observation  on  transitivity: If R is  total  functional,  inverse  functional  and 
transitive than R=D.

Proof:  Let i , j ∈R. R being  total  requires  there  is k∈M with  j , k ∈R.
Transitivity  of R requires i , k ∈R. Functionality  of R requires j=k. Thus 
i , j ∈R∧ j , j ∈R. Inverse  functionality  of R requires i= j , thus i , j ∈D.

This means R⊂D.

On  the  other  hand  let i , i∈D. R being  total  requires  there  is j∈M with
i , j ∈R. Simultaneously as above we conclude i= j , and thus i , i ∈R. Thus

D⊂R. Together this means R=D  □

Another combination of kinds or properties gives only parts of the Diagonal.

Observation on symmetry: If R is symmetric and antisymmetric then R⊂D.
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Proof:  Let i , j ∈R. Because  of  symmetry  we  have  j , i ∈R and  antisymmetry 
requires i= j which means i , j ∈D , thus R⊂D. □

A permutation matrix is a matrix having exactly one “1”-entry in each row and each 
column.

Observation  on  functionality: If R is  functional  and  inverse  functional  the 
corresponding matrix is a permutation matrix. 

Proof: Obvious from conditions.□

If R is functional and inverse functional it is possible to rearrange the ordering of 
elements in M until the corresponding matrix is a diagonal matrix where exactly the 
diagonal  entries i , j  correspond to 1.  Formally,  this means there is a  bijection 
b :M M with R={i , b i  ∣ i∈M } This might be useful but of course has effects 

on other properties of the same set.

The  following  observations  show that  there  is  only  one  property  fulfilling  certain 
combinations of conditions, namely the empty property.

Observation on asymmetry: If R is symmetric and asymmetric then R=∅ .

Proof: Let i , j ∈R. Because of symmetry we have  j , i ∈R. On the other hand 
asymmetry require  j , i ∉R , which is a contradiction. Thus there is no i , j ∈R ,
which means R=∅ □

Observation on antisymmetry: R is  asymmetric  exactly when  R is  irreflexive 
and antisymmetric.

Proof:  Assume R is  asymmetric.  Let i , j ∈R. Asymmetry  of R requires
 j , i ∉R. Thus i≠ j , which  means R is  irreflexive.  Furthermore,  the  condition
i , j ∈R∧ j , i ∈R is never true, thus the conclusion i= j is always correct, thus
R is antisymmetric.

Now assume R is  irreflexive and antisymmetric.  Let i , j ∈R. Irreflexivity of R
requires i≠ j. Antisymmetry of R requires  j , i ∉R. Thus R is asymmetric□
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R Logical Condition Set  Theoretical 
Condition

Graphical 
Condition R−1

Reflexive i , i ∈R D⊂R Contains  the 
main diagonal 

Reflexive

Irreflexive i , i ∉R D∩R=∅ Disjoint with the

main diagonal

Irreflexive

Symmetric i , j ∈R⇒ j ,i ∈R R−1=R Mirrored at main 
diagonal

Symmetric

Asymmetric i , j ∈R⇒ j ,i ∉R R−1∩R=∅ No  mirrored 
elements 
allowed,  not 
even  on  main 
diagonal

Asymmetric

Antisymmetric i , j  , j , i ∈R⇒i= j R−1∩R⊂D No  mirrored 
elements 
allowed,  except 
on  main 
diagonal

Antisymmetric

Transitive i , j  , j , k ∈R⇒i , k ∈R H  j 

projects  onto 
H i 

Transitive

Functional i , j  ,i , k ∈R⇒ j=k ∣R∩H i ∣ ≤1 Each  row 
contains at most 
one entry

Inverse 

functional

Inverse 
Functional

i , j  , j , k ∈R⇒i=h ∣R∩V  j ∣ ≤1 Each  column 
contains at most 
one entry

Functional

Table 2: Attributes of property R in logical, set theoretical and graphical description  
and effect on reverse property R−1
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Reflexive Irreflexive Symmetric Asymmetric Antisymmetric Transitive Functional Inverse 
Functional

Reflexive impossible impossible R=D R=D

Irreflexive asymmetric

Symmetric R=∅ R⊂D

Asymmetric

Antisymmetric

Transitive

Functional Permutation

Matrix

Inverse 
Functional

Table 3: Effects of combined attributes of property R

  

3 Conclusions
A good understanding of properties is a fundamental knowledge required of ontology 
developers. Here we used elementary set theory and graphics to give a foundation 
for this. 

The effects of special kinds of properties on other properties and the combination of 
different  properties have  effects  on the knowledge gained by the  reasoner  when 
exploiting this properties. Understanding and foreseeing these effects is the result of 
this paper and helps in developing consistent ontologies.

C-LAB-TR-2011-02 Page 16 of 17



C-LAB Report 

4 References
[1]  OWL 2 Web Ontology Language, Document Overview, W3C, W3C 
Recommendation 27 October 2009, http://www.w3.org/TR/2009/REC-owl2-overview-
20091027/ 

[2]  Holger Knublauch, Ontology-Driven Software Development in the Context of the  
Semantic Web: An Example Scenario with Protegé/ OWL, Stanford Medical 
Informatics, Stanford University, CA

[3]  Sean Bechhofer, Raphael Volz, Phillip W. Lord. Cooking the Semantic Web with  
the OWL API. In Proceedings of International Semantic Web Conference'2003. 
pp.659~675  

[4]  http://www.oepi-project.eu

C-LAB-TR-2011-02 Page 17 of 17

http://www.w3.org/TR/2009/REC-owl2-overview-20091027/
http://www.w3.org/TR/2009/REC-owl2-overview-20091027/

	1 Introduction and Notation
	1.1 Notation
	1.2 Kinds of Properties in OWL

	2 Kinds of properties
	2.1 Functional properties
	2.2 Inverse Functional properties
	2.3 Symmetric properties
	2.4 Antisymmetric properties
	2.5 Asymmetric properties
	2.6 Reflexive properties
	2.7 Irreflexive properties
	2.8 Transitivity
	2.8.1 The Transitive Hull
	2.8.2 Graphical Construction of Transitivity

	2.9 Simple Examples of Properties
	2.10 Observations on properties	

	3 Conclusions
	4 References

