
Relations between Ontology Properties

Siegfried Bublitz
Siemens IT Solutions and Services GmbH

C-LAB Report

Vol. 10 (2011) No. 02

Cooperative Computing & Communication Laboratory

ISSN 1619-7879

C-LAB ist eine Kooperation
der Universität Paderborn und der Siemens IT Solutions and Services GmbH

www.c-lab.de
info@c-lab.de

mailto:info@c-lab.de

C-LAB Report

C-LAB Report

Herausgegeben von
Published by

Dr. Wolfgang Kern, Siemens IT Solutions and Services GmbH
Prof. Dr. Franz-Josef Rammig, Universität Paderborn

Das C-LAB - Cooperative Computing & Communication Laboratory - leistet Forschungs- und Entwicklungs-
arbeiten und gewährleistet deren Transfer an den Markt. Es wurde 1985 von den Partnern Nixdorf Computer AG
(nun Siemens IT Solutions and Services GmbH) und der Universität Paderborn im Einvernehmen mit dem Land
Nordrhein-Westfalen gegründet.

Die Vision, die dem C-LAB zugrunde liegt, geht davon aus, dass die gewaltigen Herausforderungen beim Über-
gang in die kommende Informationsgesellschaft nur durch globale Kooperation und in tiefer Verzahnung von
Theorie und Praxis gelöst werden können. Im C-LAB arbeiten deshalb Mitarbeiter von Hochschule und Industrie
unter einem Dach in einer gemeinsamen Organisation an gemeinsamen Projekten mit internationalen Partnern
eng zusammen.

C-LAB - the Cooperative Computing & Cooperation Laboratory - works in the area of research and development
and safeguards its transfer into the market. It was founded in 1985 by Nixdorf Computer AG (now Siemens IT
Solutions and Services GmbH) and the University of Paderborn under the auspices of the State of North-Rhine
Westphalia.

C-LAB's vision is based on the fundamental premise that the gargantuan challenges thrown up by the transition to
a future information society can only be met through global cooperation and deep interworking of theory and
practice. This is why, under one roof, staff from the university and from industry cooperate closely on joint projects
within a common research and development organization together with international partners. In doing so, C-LAB
concentrates on those innovative subject areas in which cooperation is expected to bear particular fruit for the
partners and their general well-being.

ISSN 1619-7879

C-LAB
Fürstenallee 11
33102 Paderborn

fon: +49 5251 60 60 60
fax: +49 5251 60 60 66
email: info@c-lab.de
Internet: www.c-lab.de

© Siemens IT Solutions and Services GmbH und Universität Paderborn 2011
Alle Rechte sind vorbehalten.
Insbesondere ist die Übernahme in maschinenlesbare Form sowie das Speichern in Informationssystemen, auch auszugs-
weise, nur mit schriftlicher Genehmigung der Siemens IT Solutions and Services GmbH und der Universität Paderborn
gestattet.
All rights reserved.
In particular, the content of this document or extracts thereof are only permitted to be transferred into machine-readable form
and stored in information systems when written consent has been obtained from Siemens IT Solutions and Services GmbH and
the University of Paderborn.

C-LAB-TR-2011-02 Page 2 of 17

C-LAB Report

Abstract

Ontologies provide a means for modelling knowledge in computer processable form

and properties play a fundamental role when designing ontologies. For fine-tuning

knowledge, different kinds (or attributes) of properties are available. These kinds are

defined by first order logic, allowing ontology reasoning tools to automatically

generate additional knowledge which can be investigated by applications deploying

ontology reasoners. This means the generated knowledge heavily depends on the

kind of properties used in ontology modelling. In this paper we investigate how these

property kinds differ, how they relate to each other and how this can be depicted

graphically. Even so most of the results are quite obvious, we use a formal approach

to deduce them exactly.

C-LAB-TR-2011-02 Page 3 of 17

C-LAB Report

Contents

1 Introduction and Notation ... 4

1.1 Notation .. 4

1.2 Kinds of Properties in OWL .. 5

2 Kinds of properties .. 6

2.1 Functional properties .. 6

2.2 Inverse Functional properties ... 7

2.3 Symmetric properties ... 7

2.4 Antisymmetric properties ... 7

2.5 Asymmetric properties ... 8

2.6 Reflexive properties ... 8

2.7 Irreflexive properties ... 8

2.8 Transitivity .. 9

2.8.1 The Transitive Hull ... 9

2.8.2 Graphical Construction of Transitivity .. 9

2.9 Simple Examples of Properties .. 10

2.10 Observations on properties ... 11

3 Conclusions .. 15

4 References ... 16

C-LAB-TR-2011-02 Page 4 of 17

C-LAB Report

1 Introduction and Notation
Ontologies describe the domain of concept of a problem area by using classes,
objects and properties. Objects are instances of classes. Properties are binary
relations combining classes with classes thus providing properties between objects
or combining classes with values thus providing properties between objects and
values. A prominent language elaborating these concepts is OWL [1].

The properties can be specialized and of different kinds so to fulfill certain
requirements which are well known from binary relationships within mathematics.
These kinds of properties are defined by the appropriate OMG standard and realized
in editing environments as e.g. Protégé [2]. Handling OWL is quite ambitious,
Bechhofer et. al. complain in [3] about „subtly different ways and confusion reigns“
when application developer interpret language specifications.

To get a deeper feeling for this properties and how they can be combined, a
graphical representation is often very helpful. In this paper we transmit the logical
restrictions induced by the different types of properties and show how this affects
their graphical representation. The results of this work are used for ontology
modelling and incorporation in up-to-date research projects like OEPI [4].

1.1 Notation
If M is the set of all classes – or classes and value sets – used in the ontology, a
property R is just a subset of the Cartesian product of M with itself:

For a pair i , j ∈R we say i in the domain of R is associated with j in the
range of R .

Basically, there is no great difference when observing properties on M×N for
different sets M and N : Just substitute each component with the union of M
and N and we again have a property on identical component sets. This allows us
not to have to distinguish explicitly properties between classes and classes, or
between classes and values, or between objects, etc.

As we are dealing with finite sets, we can identify M with a subset of the natural
numbers, that is, when n∈ℕ is the size of M , we identify M= {1,... , n}. This
allows us to present R as a binary matrix, r ij  ,1≤i , j≤n called the adjacency
matrix of R with the definition:

Additionally, we have the ordering properties induced by natural numbers available in
M. In the following, we do not explicitly distinct between R and the corresponding

C-LAB-TR-2011-02 Page 5 of 17

R⊂M×M

r i j = 1 if  i , j ∈R; r i j = 0 otherwise

C-LAB Report

adjacency matrix as we can obviously construct one from the other and thus just
write R=r ij . Formally, we have a bijection

which allows us to use matrix operations or set operations, whatever is more
appropriate.

Let S be another property on M. The following operations known from elementary
set theory are listed here just to agree upon notation:

• complement R={i , j ∈M×M ∣ i , j ∉R }

• union R∪S={i , j ∈M×M ∣ i , j ∈R∨i , j ∈S }

• intersection R∩S={i , j ∈M×M ∣ i , j ∈R∧i , j ∈S }

• difference R ∖S={i , j ∈M×M ∣ i , j∈R∧i , j∉S }

• the size of the set R , denoted ∣R∣, is the number of elements contained in
the set R.

 Apart from this, the matrix structure allows the following definitions:

• inverse (mirrored, transposed) property R−1={i , j  ∣  j , i ∈R}

• main diagonal D={i , i  ∣ i∈M }

• row (horizontal line) at i : H i={i , j  ∣ j∈M }

• column (vertical line) at j : V  j ={i , j  ∣ i∈M }

1.2 Kinds of Properties in OWL

The following types of properties are defined in the OMG OWL2 specification:

• functional, i.e. each domain entry is associated to at most one range entry.

• inverse functional, i.e. each range entry is associated to at most one domain
entry.

• symmetric, i.e. if one entry is associated to another, the second is associated to
the first one as well.

C-LAB-TR-2011-02 Page 6 of 17

R :M×M{0,1}n∗n

C-LAB Report

• antisymmetric, two different entities can not be associated in both directions
simultaneously.

• asymmetric, i.e. if one entry is associated to another, the second is not
associated to the first.

• reflexive, i.e. each entity is associated to itself.

• irreflexive, i.e. no entity is associated to itself.

• transitive, i.e. if one entry is associated to a second one and the second one
associated to a third one, the first is associated to the third as well.

Having specified a property in an OWL ontology - e.g. in an ontology editor like
Protégé [2] - and stated the property to be of one of the specified kinds means a
reasoning tool will create associations (entries) which are demanded by this kind of
property. Simultaneously, the reasoning tool will warn when entries are created which
are prohibited by this kind of property. The better understanding of the effects of
modelling with different kinds of properties is a central topic of this paper. This helps
to understand conclusions computed by the reasoner.

2 Kinds of properties

In this chapter we examine the kinds of properties used in OWL in more detail. We
formulate the conditions stated in OWL in logical and set theoretical terms and give a
graphical interpretation as well.

2.1 Functional properties

A functional property can be considered as a functional mapping from the domain to
the range. Logically this means if two pairs are identical in the first argument, they
are identical in the second argument as well:

i , j ∈R∧i , k ∈R⇒ j=k.

or correspondingly: ∣R∩H i ∣ ≤1∀ i∈M.

If R is total functional, i. e. for every element i∈M there is j∈M with
i , j ∈R , we can write R as a function R :M M.

Graphical condition: Each row in the adjacency matrix (H i  in
the picture) contains at most one entry (with value 1).

If R is total functional, each row contains exactly one entry.

Observation: The intersection of functional properties is
functional as well.

C-LAB-TR-2011-02 Page 7 of 17

j
⋮

i ⋯ 1 ⋯ H i 
⋮

C-LAB Report

2.2 Inverse Functional properties

For an inverse functional property the inverse property is functional. This can be
considered as a functional mapping from the domain to the range. Logically this
means if two pairs are identical in the second argument, they are identical in the first
argument as well:

i , j ∈R∧h , j ∈R⇒ i=h.

or correspondingly: ∣R∩V  j ∣ ≤1∀ j∈M.

If R−1 is total functional, i.e. for every element j∈M there is
i∈M with i , j ∈R , we can write R−1 as a function
R−1:M M.

Graphical condition: Each column in the adjacency matrix (
V  j  in the picture) contains at most one entry (with value 1).

If R−1 is total functional, each column contains exactly one entry.

Observation: The intersection of inverse functional properties is inverse functional as
well.

2.3 Symmetric properties

The logical condition for symmetry is

i , j ∈R⇒ j ,i ∈R

or correspondingly: R−1=R.

Graphical condition: The adjacency matrix is mirrored at the main
diagonal.

Observation: The intersection of symmetric properties is
symmetric as well.

2.4 Antisymmetric properties

The logical condition for antisymmetry is

i , j ∈R∧ j , i ∈R⇒i= j

or correspondingly: R−1∩R⊂D .

C-LAB-TR-2011-02 Page 8 of 17

i ⋯ j
⋱ ⋮ ⋮

i ⋯ ⋱ ⋯ 1
⋮ ⋮ ⋱
j ⋯ 1

j
⋮

i ⋯ 1 ⋯
⋮

V  j 

C-LAB Report

Graphical condition: There are no mirrored entries allowed,
except on the main diagonal.

Observation: The intersection of antisymmetric properties is
antisymmetric as well.

2.5 Asymmetric properties

The logical condition for asymmetry is

i , j ∈R⇒ j , i ∉R

or correspondingly: R−1∩R=∅.

Graphical condition: There are no mirrored entries allowed, not
even on the main diagonal.

Observation: The intersection of asymmetric properties is
asymmetric as well.

2.6 Reflexive properties

The logical condition for reflexivity is

i∈M⇒i , i ∈R

or correspondingly: D⊂R.

Graphical condition: The main diagonal is contained in the
property.

Observation: The intersection of reflexive properties is reflexive as well.

2.7 Irreflexive properties

The logical condition for irreflexivity is

i∈M⇒i , i ∉R

C-LAB-TR-2011-02 Page 9 of 17

i ⋯ j
⋱ ⋮ ⋮

i ⋯ ? ⋯ 1
⋮ ⋮ ⋱
j ⋯ 0

i ⋯ j
⋱ ⋮ ⋮

i ⋯ 0 ⋯ 1
⋮ ⋮ ⋱
j ⋯ 0

1 ⋯
⋮ ⋱⋮

⋯ 1

C-LAB Report

or correspondingly: D∩R=∅

Graphical condition: Every point in the main diagonal is excluded
from the property.

Observation: The intersection of irreflexive properties is irreflexive as well.

2.8 Transitivity

Transitivity is more complex than the other kinds, so it is discussed here in more
detail.

The logical condition for transitivity is

i , j ∈R∧ j , k ∈R⇒i , k ∈R.

2.8.1 The Transitive Hull

Each property R can be extended by putting additional entries into it which are
demanded by the transitivity condition. This can be continued until the resulting
property is transitive. As the example with the complete property M×M shows, this
is always possible. Furthermore, the result is independent from the insertion order of
new entries. Therefore, the result is unique and is called the transitive hull of the
property, noted as R∗ and formalized as the smallest transitive property that
contains the original one and is transitive. Since the intersection of two transitive
properties is transitive as well, we can define

Observation 1: R⊂R∗ .

Observation 2: R is transitive if and only if R=R∗ .

2.8.2 Graphical Construction of Transitivity

The graphical aspects of transitivity are depicted by the following picture. The
construction can be used to create the transitive hull of a given property.

C-LAB-TR-2011-02 Page 10 of 17

R∗=∩ {S∣Stransitive ,R⊂S }

0 ⋯
⋮ ⋱ ⋮

⋯ 0

C-LAB Report

Graphically, the following is happening: Consider the point i , j  marked with 1 in
the matrix. This point lies on the column V  j . The point where V  j  intersects
the main diagonal is marked with ∗ in the matrix. Consider the row H  j  which
contains this point. Every entry marked 1 in H  j  corresponds to an entry
 j , k  in R and transitivity requires an entry i , k  to exist, which is just an entry

marked 1 in H i  at position k. We can say for the property R : every entry in
H  j  induces the existence of an entry in H i  in the same column. More

suggestively: H  j  projects onto H i  , which is illustrated by the vertical arrow
in the picture.

Observation 3: H i  contains at least as much 1's as
H  j : ∣R∩H  j ∣ ≤ ∣R∩H i ∣

Observation 4: If  j , i ∈R then H i  projects on H  j  as well. This means
there is the same number of 1's at the same columns in H i  and H  j .

2.9 Simple Examples of Properties

Here are some examples of simple properties. The effects are illustrated in Table 1.

• Complete property R=M×M

• Empty property R=∅

• Main Diagonal D={i , i  ∣ i∈M }

• Row (horizontal line) at i : H i={i , j  ∣ j∈M }

• Column (vertical line) at j : V  j = {i , j  ∣ i∈M }

C-LAB-TR-2011-02 Page 11 of 17

j ⋯ k
⋱ ⋮ ⋮

i ⋯ ⋱ ⋯ 1 ⋯ 1 ⋯ H i 
⋮ ⋱ ⋮ ⋮ 
j ⋯ ⋯ ⋯ ∗ ⋯ 1 ⋯ H  j 

⋮ ⋱
V  j 

C-LAB Report

 R

Reflexive

Irreflexive

 Symmetric

Asymmetric

 Antisymmetric

Transitive

Functional

Inverse Functional

M×M + + +

∅ + + + + + + +

 D + + + + + + +

H i  + + + +

V  j  + + + +

Table 1: Attributes of example properties

2.10 Observations on properties

Observation on reverse property: If R is reflexive, irreflexive, symmetric,
asymmetric, antisymmetric, or transitive than R−1 is so as well. If R is functional
than R−1 is inverse functional and vice versa.

Proof:

a) Assume R is reflexive. Then D⊂R and definition of D gives D⊂R−1 , thus
R−1 is reflexive.

b) Assume R is irreflexive. Then D⊂R and definition of D gives D∩R−1=∅ ,
thus R−1 is irreflexive.

c) Assume R is symmetric. Let i , j ∈R−1 . Then  j , i ∈R. Symmetry of R
requires i , j ∈R , which means  j , i ∈R−1 , thus R−1 is symmetric.

C-LAB-TR-2011-02 Page 12 of 17

C-LAB Report

d) Assume R is asymmetric. Let i , j ∈R−1 . Then  j , i ∈R. Asymmetry of R
requires i , j ∉R , which means  j , i ∉R−1 , thus R−1 is asymmetric.

e) Assume R is antisymmetric. Let i , j ∈R−1∧ j , i ∈R−1. Then
 j , i ∈R∧i , j ∈R. Antisymmetry of R requires i= j , thus R−1 is

antisymmetric.

f) Assume R is transitive. Let i , j  , j , k ∈R−1 . Then  j , i  ,k , j ∈R. Transitivity
of R requires k , i ∈R , which means i , k ∈R−1 , thus R−1 is transitive.

g) Assume R is functional. Let i , j ∈R−1∧h , j ∈R−1. Then  j , i ∈R∧ j , h∈R.
Functionality of R requires i=h , thus R−1 is inverse functional.

h) Assume R is inverse functional. Let i , j ∈R−1∧i , k ∈R−1 . Then
 j , i ∈R∧k ,i ∈R. Inverse functionality of R requires j=k , thus R−1 is

functional□

The next observations show certain kinds of property combinations to result in a
single property, the Diagonal.

Observation on reflexivity: If R is reflexive and functional or inverse functional,
than R=D.

Proof: Let i , j ∈R. Because of reflexivity we have i , i∈R and each of
functionality or inverse functionality requires i= j which means i , i ∈R , thus
R⊂D. On the other hand reflexivity requires D⊂R , thus R=D. □

Observation on transitivity: If R is total functional, inverse functional and
transitive than R=D.

Proof: Let i , j ∈R. R being total requires there is k∈M with  j , k ∈R.
Transitivity of R requires i , k ∈R. Functionality of R requires j=k. Thus
i , j ∈R∧ j , j ∈R. Inverse functionality of R requires i= j , thus i , j ∈D.

This means R⊂D.

On the other hand let i , i∈D. R being total requires there is j∈M with
i , j ∈R. Simultaneously as above we conclude i= j , and thus i , i ∈R. Thus

D⊂R. Together this means R=D □

Another combination of kinds or properties gives only parts of the Diagonal.

Observation on symmetry: If R is symmetric and antisymmetric then R⊂D.

C-LAB-TR-2011-02 Page 13 of 17

C-LAB Report

Proof: Let i , j ∈R. Because of symmetry we have  j , i ∈R and antisymmetry
requires i= j which means i , j ∈D , thus R⊂D. □

A permutation matrix is a matrix having exactly one “1”-entry in each row and each
column.

Observation on functionality: If R is functional and inverse functional the
corresponding matrix is a permutation matrix.

Proof: Obvious from conditions.□

If R is functional and inverse functional it is possible to rearrange the ordering of
elements in M until the corresponding matrix is a diagonal matrix where exactly the
diagonal entries i , j  correspond to 1. Formally, this means there is a bijection
b :M M with R={i , b i  ∣ i∈M } This might be useful but of course has effects

on other properties of the same set.

The following observations show that there is only one property fulfilling certain
combinations of conditions, namely the empty property.

Observation on asymmetry: If R is symmetric and asymmetric then R=∅ .

Proof: Let i , j ∈R. Because of symmetry we have  j , i ∈R. On the other hand
asymmetry require  j , i ∉R , which is a contradiction. Thus there is no i , j ∈R ,
which means R=∅ □

Observation on antisymmetry: R is asymmetric exactly when R is irreflexive
and antisymmetric.

Proof: Assume R is asymmetric. Let i , j ∈R. Asymmetry of R requires
 j , i ∉R. Thus i≠ j , which means R is irreflexive. Furthermore, the condition
i , j ∈R∧ j , i ∈R is never true, thus the conclusion i= j is always correct, thus
R is antisymmetric.

Now assume R is irreflexive and antisymmetric. Let i , j ∈R. Irreflexivity of R
requires i≠ j. Antisymmetry of R requires  j , i ∉R. Thus R is asymmetric□

C-LAB-TR-2011-02 Page 14 of 17

C-LAB Report

R Logical Condition Set Theoretical
Condition

Graphical
Condition R−1

Reflexive i , i ∈R D⊂R Contains the
main diagonal

Reflexive

Irreflexive i , i ∉R D∩R=∅ Disjoint with the

main diagonal

Irreflexive

Symmetric i , j ∈R⇒ j ,i ∈R R−1=R Mirrored at main
diagonal

Symmetric

Asymmetric i , j ∈R⇒ j ,i ∉R R−1∩R=∅ No mirrored
elements
allowed, not
even on main
diagonal

Asymmetric

Antisymmetric i , j  , j , i ∈R⇒i= j R−1∩R⊂D No mirrored
elements
allowed, except
on main
diagonal

Antisymmetric

Transitive i , j  , j , k ∈R⇒i , k ∈R H  j 

projects onto
H i 

Transitive

Functional i , j  ,i , k ∈R⇒ j=k ∣R∩H i ∣ ≤1 Each row
contains at most
one entry

Inverse

functional

Inverse
Functional

i , j  , j , k ∈R⇒i=h ∣R∩V  j ∣ ≤1 Each column
contains at most
one entry

Functional

Table 2: Attributes of property R in logical, set theoretical and graphical description
and effect on reverse property R−1

C-LAB-TR-2011-02 Page 15 of 17

C-LAB Report

Reflexive Irreflexive Symmetric Asymmetric Antisymmetric Transitive Functional Inverse
Functional

Reflexive impossible impossible R=D R=D

Irreflexive asymmetric

Symmetric R=∅ R⊂D

Asymmetric

Antisymmetric

Transitive

Functional Permutation

Matrix

Inverse
Functional

Table 3: Effects of combined attributes of property R

3 Conclusions
A good understanding of properties is a fundamental knowledge required of ontology
developers. Here we used elementary set theory and graphics to give a foundation
for this.

The effects of special kinds of properties on other properties and the combination of
different properties have effects on the knowledge gained by the reasoner when
exploiting this properties. Understanding and foreseeing these effects is the result of
this paper and helps in developing consistent ontologies.

C-LAB-TR-2011-02 Page 16 of 17

C-LAB Report

4 References
[1] OWL 2 Web Ontology Language, Document Overview, W3C, W3C
Recommendation 27 October 2009, http://www.w3.org/TR/2009/REC-owl2-overview-
20091027/

[2] Holger Knublauch, Ontology-Driven Software Development in the Context of the
Semantic Web: An Example Scenario with Protegé/ OWL, Stanford Medical
Informatics, Stanford University, CA

[3] Sean Bechhofer, Raphael Volz, Phillip W. Lord. Cooking the Semantic Web with
the OWL API. In Proceedings of International Semantic Web Conference'2003.
pp.659~675

[4] http://www.oepi-project.eu

C-LAB-TR-2011-02 Page 17 of 17

http://www.w3.org/TR/2009/REC-owl2-overview-20091027/
http://www.w3.org/TR/2009/REC-owl2-overview-20091027/

	1 Introduction and Notation
	1.1 Notation
	1.2 Kinds of Properties in OWL

	2 Kinds of properties
	2.1 Functional properties
	2.2 Inverse Functional properties
	2.3 Symmetric properties
	2.4 Antisymmetric properties
	2.5 Asymmetric properties
	2.6 Reflexive properties
	2.7 Irreflexive properties
	2.8 Transitivity
	2.8.1 The Transitive Hull
	2.8.2 Graphical Construction of Transitivity

	2.9 Simple Examples of Properties
	2.10 Observations on properties	

	3 Conclusions
	4 References

