

Events, contexts, and incidents
Architecture concepts

White Paper on foundations of autonomous management

Dr. Wolfgang Thronicke
Siemens AG

C-LAB Short Report

Vol. 3 (2009) No. 1

Cooperative Computing & Communication Laboratory

ISSN 1614-1172

C-LAB ist eine Kooperation
der Universität Paderborn und der Siemens AG

www.c-lab.de
info@c-lab.de

C-LAB Short Report

Herausgegeben von
Published by

Dr. Wolfgang Kern, Siemens AG
Prof. Dr. Franz-Josef Rammig, Universität Paderborn

Das C-LAB - Cooperative Computing & Communication Laboratory - leistet Forschungs- und Entwick-

lungsarbeiten und gewährleistet deren Transfer an den Markt. Es wurde 1985 von den Partnern Nixdorf

Computer AG (nun Siemens AG) und der Universität Paderborn im Einvernehmen mit dem Land Nord-

rhein-Westfalen gegründet.

Die Vision, die dem C-LAB zugrunde liegt, geht davon aus, dass die gewaltigen Herausforderungen beim

Übergang in die kommende Informationsgesellschaft nur durch globale Kooperation und in tiefer Verzah-

nung von Theorie und Praxis gelöst werden können. Im C-LAB arbeiten deshalb Mitarbeiter von Hoch-

schule und Industrie unter einem Dach in einer gemeinsamen Organisation an gemeinsamen Projekten

mit internationalen Partnern eng zusammen.

C-LAB - the Cooperative Computing & Cooperation Laboratory - works in the area of research and de-

velopment and safeguards its transfer into the market. It was founded in 1985 by Nixdorf Computer AG

(now Siemens AG) and the University of Paderborn under the auspices of the State of North-Rhine

Westphalia.

C-LAB's vision is based on the fundamental premise that the gargantuan challenges thrown up by the

transition to a future information society can only be met through global cooperation and deep interwork-

ing of theory and practice. This is why, under one roof, staff from the university and from industry cooper-

ate closely on joint projects within a common research and development organization together with inter-

national partners. In doing so, C-LAB concentrates on those innovative subject areas in which coopera-

tion is expected to bear particular fruit for the partners and their general well-being.

ISSN 1614-1172

C-LAB
Fürstenallee 11
33102 Paderborn
fon: +49 5251 60 60 60
fax: +49 5251 60 60 66
email: info@c-lab.de
Internet: www.c-lab.de

© Siemens AG und Universität Paderborn 2009
Alle Rechte sind vorbehalten.
Insbesondere ist die Übernahme in maschinenlesbare Form sowie das Speichern in Informationssystemen, auch
auszugsweise, nur mit schriftlicher Genehmigung der Siemens AG und der Universität Paderborn gestattet.
All rights reserved.
In particular, the content of this document or extracts thereof are only permitted to be transferred into machine-
readable form and stored in information systems when written consent has been obtained from Siemens AG and the
University of Paderborn..

 C-LAB Short Report

C-LAB Short Report Vol. 3 (2009) No. 1

Reactive and proactive systems rely on efficient handling of

internal data and the timely notification of changes in compo-

nents. This paper explains the concepts for the processing of

such notifications in software systems and components and

presents a concept of managing higher level state information

as contexts and their relation to incidents which are the basis

for intelligent autonomous systems and advanced manage-

ment functionality.

Dr. Wolfgang Thronicke

Siemens AG

Motivation

Situation- and context-awareness are common keywords to describe actual sys-

tems which offer autonomous functionality for the user by ‘understanding’ what is

happening and how to react appropriately. However, the term context itself is

quite overloaded and often mixed with the term events.

In the German OSAMI project one aspect to be researched and developed is a

sophisticated management component which should (semi-)autonomously react

on certain occurrences during system operation. In order to design this software

for the conceptual level a closer investigation of the relation of events to contexts

and higher-level incidents needed to be made and is elaborated in the following

sections.

 C-LAB Short Report

C-LAB Short Report Vol. 3 (2009) No. 1

Events

Every modern software system requires a means to communicate data from one

component – the producer – to others – the consumers. Despite of having the

consumers constantly check the source component for new data (polling), the

source pushes new information to components which have registered or sub-

scribed to this information. This information is called an ‘event’ which is more gen-

erally a message sent with the payload of event data contained.

This typical pattern is common for user interface toolkits, where user input like

mouse movements, or keyboard use causes events which are propagated to

processing components. In short: something happens and an event is triggered

and sent to the recipients.

Systems built on this paradigm are called event-driven or event-based. Especially

when the triggered events are not caused by deliberate human interaction this

systems are called ‘reactive‘.

In fact, event processing is message processing. A typical pattern (see Figure 1)

is that of EventProvider and EventListener which describes the call of a routine in

the listening component1. Events usually carry the information about the cause of

the event and the data involved, e.g. a mouse click and the actual mouse coordi-

nates.

Figure 1: Event Listener Pattern

1 In programming languages like JAVA or C# this is denoted by implementing a listener interface which
requires to implement the event handler.

 C-LAB Short Report

C-LAB Short Report Vol. 3 (2009) No. 1

Context & Incident

Since an event is only a singular occurrence it is quite complicated to talk about

the situational context or the state context of an application or system only based

on events.

Context events

For our purposes a context can be defined as the set which contains of a set of

events and derived data which are represented as 4-tuples (time, source, type,

data) of context-events2. The time records the actual time of occurrence, source

describes who has produced this context, and type defines the meaning of the

data. The term context processing describes mechanisms which take such con-

texts and introduce new derived contexts with a more specialized meaning. A

simple example is the processing of a geo-coordinate context into the context ‘at-

home’.

During the life-time of the system (or program run) context-events are generated

starting from t0 to tend. The ordered by-time context-events form the context-trail

or context-trace of the system. However, it is usually not the complete trace which

is required to derive certain conclusions about a system, especially when actions

are to be derived from such these conclusions. A context is called relevant if it is

sufficient to make such a statement.

The current context of system can be defined as partial set with context-events

belonging to a defined timeframe backwards from the current time. This describes

the current view of the system about its state. The current full-typed context con-

tains the current context augmented by the most recent context-events from types

not in the current context.

2 The introduction context-events is necessary in order not to mix a context (which is a set) with the
single item (created by events or processing).

 C-LAB Short Report

C-LAB Short Report Vol. 3 (2009) No. 1

Context patterns

The problem of deriving conclusions from contexts is to define a means to

constrain the amount of contexts to be evaluated from the context-trail. The set of

all relevant contexts to derive a statement S specify the context-patterns for sta-

tement S. So an identifying process can focus on comparing the current context of

a system with the context-patterns for S.

Most times context-patterns are described in a high-level description like: ‘Given

the set of temperature sensors of the house watch for a rise of temperature over

40 degrees from the same sensor in the last 5 minutes.’ The formal expression of

this pattern is of course more complex and harder to understand. However, this

kind of description is usually enough to implement the pattern in a search engine

for context patterns.

Incidents

When state of the system can be described on a high level as set of all current

statements found out from the current context, statements can remain valid until

they are renewed by a context pattern identification process or they expire after a

certain time. From a formal approach it is convenient to define a statement having

the possible values of true, false, or unknown. Thus, an expired or not yet compu-

ted statement is simply ‘unknown’.

Every reevaluation of a statement may change the current state of a system. All

states which have to be acted upon are called incidental. Thus, the change from a

non-incidental state to an incidental one is called an incident. From a system point

of view it is the incidents which signal a system failure or a management or main-

tenance issue or any other action. Of course, this seems to be like an event by

itself but an incident carries a semantic meaning because it contains the distilled

contextual information and the mapping to the work environment and use-case of

the system.

 C-LAB Short Report

C-LAB Short Report Vol. 3 (2009) No. 1

Architecture for Context and Incident Processing

The advantage of the separation of events, contexts, and incidents becomes evi-

dent, when a flexible, and modular system for processing contexts and managing

incidents has to be conceived: Sensors, and their device driver usually build the

proprietary layer which is closely connected to the operating system. Thus, the

events they throw and the data provided by them use specific protocols which ha-

ve to be mapped into standard data-types available. Sometimes a device itself

does not throw an event but can only be polled, so there has to be a specific

event generator component. In order to enable a unified processing across differ-

ent event sources the context processing layer serves as abstraction from the

partly not homogenous events as provides a common interface for notification and

processing. A specific component the ‘context store‘ serves as persistent or tran-

sient memory for such context-events. With this standardization the incident de-

tection and processing is decoupled from individual events and event-sources can

be formulated as generic common part of the system. Figure 2 gives a top-level

view of this architecture. Context handlers can directly work on the context store

and read and write contexts. For instance, high-level contexts can be introduced

which are computed from other contexts.

 C-LAB Short Report

C-LAB Short Report Vol. 3 (2009) No. 1

Figure 2: Top-level architecture

In this sense the incident detector is also a specialized context handler which

searches for specific context-patterns to identify incidents which are then proces-

sed by the incident handler.

The incident handler can serve several purposes: In a simple realization it could

simply send alerts about incidents to a remote system, or – in a more sophistica-

ted scenario – autonomously react on this by triggering suitable management and

control functions.

